Disclaimer – Electronic Document

The electronic copy of this document (the "Copy") has been delivered for the convenience and use of the recipient. The recipient accepts full responsibility for verifying the accuracy and completeness of the data and information in the Copy, and acknowledges that it is a working, but not definitive copy of this document.

The original hard copy of this document, signed by an authorized officer of Malroz (the "Original"), delivered and used in accordance with the terms of the applicable proposal or engagement contract entered into by Malroz for its preparation (the "Contract"), contains the only definitive terms, data and information on which reliance may be made. Malroz accepts no responsibility for and will have no liability arising from any use of or reliance on any data or information contained in the Copy. The delivery of the Copy to the recipient does not give the recipient or any other party any rights of use or reliance that are not expressly set out in the Contract.

The recipient agrees to defend, indemnify and hold Malroz harmless of and from any losses, claims, actions, liabilities, costs and expenses (including legal fees on a solicitor and his own client basis) arising in connection with the use or reliance on data or information contained in the Copy by any party not entitled to do so under the terms of the Contract.

The recipient of the Copy is prohibited from redistributing it, and from using any design or drawing information contained within it, in whole or in part, for any purpose other than that expressly permitted in the Contract, without the express prior written consent from Malroz, signed by an authorized officer of Malroz. TOWNSHIP OF LEEDS AND THE THOUSAND ISLANDS

Reynold's Road Waste Disposal Site 2019 Annual Monitoring Report

ECA No. 442001 File No. 1039-107 Submitted: March 2020

Appendix D-Monitoring and Screening Checklist General Information and Instructions

General Information: The checklist is to be completed, and submitted with the Monitoring Report.

Instructions: A complete checklist consists of:

(a) a completed and signed checklist, including any additional pages of information which can be attached as needed to provide further details where indicated.

(b) completed contact information for the Competent Environmental Practitioner (CEP)

(c) self-declaration that CEP(s) meet(s) the qualifications as set out below and in Section 1.2 of the Technical Guidance Document.

Definition of Groundwater CEP:

For groundwater, the CEP must have expertise in hydrogeology and meet one of the following:

(a) the person holds a licence, limited licence or temporary licence under the Professional Engineers Act; or

(b) the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary, member or limited member of the Association of Professional Geoscientists of Ontario. O. Reg. 66/08, s. 2..

Definition of Surface water CEP:

A CEP for surface water assessments is a scientist, professional engineer or professional geoscientist as described in (a) and (b) above with demonstrated experience and post-secondary education, either a diploma or degree, in hydrology, aquatic ecology, limnology, aquatic biology, physical geography with specialization in surface water, and/or water resource management.

The type of scientific work that a CEP performs must be consistent with that person's education and experience. If an individual has appropriate training and credentials in both groundwater and surface water and is responsible for both areas of expertise, the CEP may then complete and validate both sections of the checklist.

	Monitoring Report and Site Information				
Waste Disposal Site Name	Reynold's Road Waste Disposal Site				
Location (e.g. street address, lot, concession)	Lot 18, Concession2, in the Township of Leeds and the Thousand Islands				
GPS Location (taken within the property boundary at front gate/ front entry)	18 T 419161 m E, 4915429 m N				
Municipality	Township of Leeds and the Thousand Islands				
Client and/or Site Owner	The Corporation of the Township of Leeds and the Thousand Islands				
Monitoring Period (Year)	2019				
This	Monitoring Report is being submitted under the following:				
Environmental Compliance Approval Number:	A442001				
Director's Order No.:	NA				
Provincial Officer's Order No.:	NA				
Other:	NA				

Report Submission Frequency	AnnualOther		
The site is: (Operation Status)		 ○ Open ○ Inactive ● Closed 	
Does your Site have a Total Approved Capacity?		YesNo	
lf yes, please specify Total Approved Capacity		Units	Cubic Metres
Does your Site have a Maximum Approved Fill Rate?		O Yes No	
lf yes, please specify Maximum Approved Fill Rate	NA	Units	
Total Waste Received within Monitoring Period (Year)		Units	Cubic Metres
Total Waste Received within Monitoring Period (Year) <i>Methodology</i>			
Estimated Remaining Capacity		Units	Cubic Metres
Estimated Remaining Capacity <i>Methodology</i>			1
Estimated Remaining Capacity <i>Date Last Determined</i>			
Non-Hazardous Approved Waste Types	 Domestic Industrial, Commercial & Institutional (IC&I) Source Separated Organics (Green Bin) Tires 	 Contaminated Soil Wood Waste Blue Box Material Processed Organics Leaf and Yard Waste 	 Food Processing/Preparation Operations Waste Hauled Sewage Other:
Subject Waste Approved Waste Classes: Hazardous & Liquid Industrial (separate waste classes by comma)			1
Year Site Opened (enter the Calendar Year <u>only</u>)	1970	Current ECA Issue Date	November 10, 2016
Is your Site required to submit Financial Assurance?		○ ●	Yes No
Describe how your Landfill is designed.		 Natural Attenuation o Partially engineered F 	
Does your Site have an approved Contaminant Attenuation Zone?		○ ●	Yes No

If closed, specify C of A, control or authorizing document closure date:		Amended ECA A442001, November 10, 2016	
Has the nature of the operations at the site changed during this monitoring period?		○ Yes ● No	
If yes, provide details:	Type Here		
Have any measurements been taken since the last reporting period that indicate landfill gas volumes have exceeded the MOE limits for subsurface or adjacent buildings? (i.e. exceeded the LEL for methane)		Yes● No	

Groundwater WDS Verification: Based on all available information about the site and site knowledge, it is my opinion that:				
	Sampling and Monitori		:	
1) The monitoring program continues to effectively characterize site conditions and any groundwater discharges from the site. All monitoring wells are confirmed to be in good condition and are secure:	● Yes ○ No			
2) All groundwater, leachate and WDS gas sampling and monitoring for the monitoring period being reported on was successfully completed as required by Certificate(s) of Approval or other relevant authorizing/control document (s):	 Yes No Not Applicable 	If no, list exceptions below o	or attach information.	
Groundwater Sampling Location	Description/Explanation for change change in name or location, additions, deletions)		Date	
Type Here	Type Here		Select Date	

3) a) Is landfill gas being monitored or controlled at the site?		● Yes ○ No	
If yes to 3(a), please answer the nex	t two questions below.		
b) Have any measurements been taken since the last reporting period that indicate landfill gas is present in the subsurface at levels exceeding criteria established for the site?		⊖ Yes ● No	
c) Has the sampling and monitoring identified under 3(a) for the monitoring period being reported on was successfully completed in accordance with established protocols, frequencies, locations, and parameters developed as per the Technical Guidance Document, or MECP concurrence.		 Yes No Not Applicable 	If no, list exceptions below or attach additional information.
Groundwater Sampling Location (change in name or location, additions, deletions)		Date	
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
4) All field work for groundwater investigations was done in accordance with standard operating procedures as established/outlined per the Technical Guidance Document (including internal/external QA/QC requirements) (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	● Yes ○ No	See report for details.	

Sampling and Mo	nitoring Program Resu	Its/WDS Conditions	and Assessment:
5) The site has an adequate buffer, Contaminant Attenuation Zone (CAZ) and/or contingency plan in place. Design and operational measures, including the size and configuration of any CAZ, are adequate to prevent potential human health impacts and impairment of the environment.	● Yes ○ No	Buffer lands to the north w	vere purchased in 2016.
6) The site meets compliance and assessment criteria.	● Yes ○ No	See previous comment ar	nd report for details.
7) The site continues to perform as anticipated. There have been no unusual trends/ changes in measured leachate and groundwater levels or concentrations.	● Yes ○ No	If no, list exceptions and e (Type Here):	explain reason for increase/change
 1) Is one or more of the following risk reduction practices in place at the site: (a) There is minimal reliance on natural attenuation of leachate due to the presence of an effective waste liner and active leachate collection/ treatment; or (b) There is a predictive monitoring program inplace (modeled indicator concentrations projected over time for key locations); or (c) The site meets the following two conditions (typically achieved after 15 years or longer of site operation): <i>i</i>. The site has developed stable leachate mound(s) and stable leachate plume geometry/concentrations; and <i>ii</i>. Seasonal and annual water levels and water quality fluctuations are well understood. 	 Yes No 	Note which practice(s):	 □ (a) □ (b) ☑ (c) As discussed in report.
9) Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	 Yes No Not Applicable 		

Groundwater CEP Declaration:

I am a licensed professional Engineer or a registered professional geoscientist in Ontario with expertise in hydrogeology, as defined in Appendix D under Instructions. Where additional expertise was needed to evaluate the site monitoring data, I have relied on individuals who I believe to be experts in the relevant discipline, who have co-signed the compliance monitoring report or monitoring program status report, and who have provided evidence to me of their credentials.

I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed, as deemed appropriate for this Site in my professional judgement, the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MOE, 2010, or as amended), and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analyzed to ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories, or as amended from time to time by the ministry.

The completion of this Checklist is a requirement of the MECP. As always, we rely upon the MECP to undertake a complete review the report(s) provided regarding the waste disposal site/landfill, and provide their comments and acceptance of our interpretation, conclusions and recommendations. The Checklist should in no way supersede the MECP's responsibility to undertake their complete review of our report(s) to ensure Site compliance with environmental regulations, standards and/or approvals. If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature and will be rectified for the next monitoring/reporting period. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated:

Select Date

Recommendations:

Based on my technical review of the monitoring results for the waste disposal site:

See report for additional information. Given that the site has been closed since 1971, ground water results indicate little to no leachate impacts in the vicinity of the waste, and that groundwater trends for the leachate indicators (ammonia, boron, dissolved organic carbon (DOC), chloride and conductivity) have been stable or decreasing since 2016 or more, the site has likely reached its final maturation and stabilization phase. Therefore we recommend that sampling at this site be discontinued. Sampling may be resumed should adverse conditions be observed during the site inspections.

Name:	John Pyke		
Seal:	Add Image		
Signature:	Juz	Date:	March 27, 2020
CEP Contact Information:	John Pyke		
	Malroz Engineering Inc.		
Company:			
308 Wellington St., 2nd Floor, Kingston ON			
Address:			
Telephone No.:	613-548-3446 ext. 34	Fax No. :	Type Here
E-mail Address:	pyke@malroz.com		
Co-signers for additional expertise provided:			
Signature:		Date:	Select Date
Signature:		Date:	Select Date

Surface Water WDS Verification:				
Provide the name of surface wate waterbody (including the nearest su			d the approximate distance to the	
Name (s)	Unnamed creek			
Distance(s)	through west portion of Site and into marsh north of Site			
Based on all available information a				
 The current surface water monitoring program continues to effectively characterize the surface water conditions, and includes data that relates upstream/background and downstream receiving water conditions: All surface water sampling for the monitoring period being 		nd Monitoring Program Status: No surface water program in place.		
reported was successfully completed in accordance with the Certificate(s) of Approval or relevant authorizing/control document(s) (if applicable):	 ○ No Not applicable (No C of A, ● authorizing / control document applies) 	A , If no, specify below or provide details in an attachment.		
Surface Water Sampling Location	Description/Explana (change in name or location)	-	Date	
Type Here	Type Here		Select Date	

 a) Some or all surface water sampling and monitoring program requirements for the monitoring period have been established outside of a ministry C of A or authorizing/control document, or MECP concurrence. 		 Yes No Not Applicable 	
b) If yes, all surface water sampl under 3 (a) was successfully con established program from the s protocols, frequencies, location developed per the Technical Gu	npleted in accordance with the ite, including sampling s and parameters) as	 Yes No Not Applicable 	If no, specify below or provide details in an attachment.
Surface Water Sampling Location	Description/Explana (change in name or locatior		Date
Type Here	Type Here		Select Date
4) All field work for surface water investigations was done in accordance with standard operating procedures, including internal/external QA/ QC requirements, as established/outlined as per the Technical Guidance Document, MOE 2010, or as amended. (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	● Yes ○ No	No surface water program	n in place.

Sampling and Monitoring Program Results/WDS Conditions and Assessment:

5) The receiving water body meets surface water-related compliance criteria and assessment criteria: i.e., there are no exceedences of criteria, based on MECP legislation, regulations, Water Management Policies, Guidelines and Provincial Water Quality Objectives and other assessment criteria (e.g., CWQGs, APVs), as noted in Table A or Table B in the Technical Guidance Document (Section 4.6):

YesNo

If no, list parameters that exceed criteria outlined above and the amount/percentage of the exceedance as per the table below or provide details in an attachment:

Parameter	Compliance or Assessment Criteria or Background	Amount by which Compliance or Assessment Criteria or Background Exceeded
e.g. Nickel	e.g. C of A limit, PWQO, background	e.g. X% above PWQO
No surface water program in place.		
6) In my opinion, any exceedances listed in Question 5 are the result of non-WDS related influences (such as background, road salting, sampling site conditions)?	● Yes ○ No	No surface water program in place.

7)	All monitoring program surface water parameter concentrations fall within a stable or decreasing trend. The site is not characterized by historical ranges of concentrations above assessment and compliance criteria.	● Yes ○ No	No surface water program in place.
8)	For the monitoring program parameters, does the water quality in the groundwater zones adjacent to surface water receivers exceed assessment or compliance criteria (e.g. , PWQOs, CWQGs, or toxicity values for aquatic biota (APVs)):	 Yes No Not Known Not Applicable 	
9)	Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	 Yes No Not Applicable 	If yes, list value(s) that are/have been exceeded and follow-up action taken (Type Here): See report for discussion.

Surface Water CEP Declaration:

I, the undersigned hereby declare that I am a Competent Environmental Practitioner as defined in Appendix D under Instructions, holding the necessary level of experience and education to design surface water monitoring and sampling programs, conduct appropriate surface water investigations and interpret the related data as it pertains to the site for this monitoring period.

I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed, as deemed appropriate for this Site in my professional judgement, the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MECP, 2010, or as amended) and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analysed to ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories, or as amended from time to time to time by the ministry.

The completion of this Checklist is a requirement of the MECP. As always, we rely upon the MOE to undertake a complete review the report(s) provided regarding the waste disposal site/landfill, and provide their comments and acceptance of our interpretation, conclusions and recommendations. This Checklist should in no way supersede the MECP responsibility to undertake their complete review of our report(s) to ensure compliance with environmental regulations, standards and approvals.

If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature or will be rectified for future monitoring events. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated:

Select Date

Recommendations:

Based on m	v technical	review of t	he monitoring	results for the	e waste disposal site:
buscu on m	y ceennear		ne montoring	100 101 101	. waste alsposal site.

No Changes to the monitoring program are recommended	
The following change(s) to the	
No changes to the site design and operation are recommended	Type Here
The following change(s) to the	

CEP Signature	Jurn		
Relevant Discipline	Geoscientist with relevant experience and training.		
Date:	March 27, 2019		
CEP Contact Information:	John Pyke		
Company:	Malroz Engineering Inc.		
Address:	308 Wellington St., 2nd Floor, Kingston ON		
Telephone No.:	613-548-3446 ext. 34		
Fax No. :	Туре Неге		
E-mail Address:	pyke@malroz.com		
Save As	Print Form		

NOTICE TO READER

This document has been prepared by Malroz Engineering Inc. (Malroz) on behalf of the Township of Leeds and the Thousand Islands (TLTI), in fulfilment of Condition 2(3) of Amended Environmental Compliance Approval (ECA) No. A442001.

Malroz has relied upon TLTI staff to provide historic data and the conceptual understanding of the site. Malroz accepts no responsibility for the integrity of the data provided by TLTI or for missing data. Any third-party use or reliance of this report, or decisions made based on this report, are the responsibilities of the third parties. Malroz accepts no responsibility for damages suffered by any third party as a result of decisions made or actions taken based on the contents of this report.

This document has been prepared for TLTI for submission to the Ministry of Environment, Conservation and Parks (MECP) as required by the ECA. Unauthorized re-use of this document for any other purpose, or by third parties without the express written consent of Malroz shall be at such party's sole risk.

This page is an integral part of this document and must remain with it at all times.

Respectfully Submitted,

MALROZ ENGINEERING INC.

per: Albert Paschkowiak, C.E.T. Environmental Technologist

u, 0 1855 ONTAR

and: John Pyke, P. Geo Project Manager

Table of Contents

NOTICE TO READERi		
1.0 1.1	Introduction1 Ownership and Key Personnel1	
2.0	Background2	
2.1	Description of the Waste Disposal Site2)
2.2	2 Geological Setting)
2.3	Hydrogeologic Setting2	2
2.4	Surface Water Features	3
2.5	MECP Review	ł
3.0	Description of Monitoring Program4	4
3.1		
3.2	Site Inspection	ł
3.3	Groundwater Monitoring Program	ł
3.4		
3.5	Data Quality Evaluation	5
4.0	Discussion of Results	5
4.1	Well Inspection	5
4.2	Site Inspection6	3
4.3	Landfill Gas and Water Level Monitoring6	3
4.4	Groundwater Interpretation	3
4.5	Reasonable Use Policy6	5
5.0	Conclusions & Recommendations7	,
6.0	References	}

List of Appendices

- Appendix A Amended Environmental Compliance Approval No. 442001
- Appendix B Figures
 - Figure 1 Site Location
 - Figure 2 Site Plan
- Appendix C Borehole Logs and Water Well Records from Adjacent Properties
- Appendix D MECP Correspondence
- Appendix E Tables
 - Table 1Sampling Parameters
 - Table 2Well Inspection Summary
 - Table 3Groundwater Monitoring Results
 - Table 4General Chemistry Analysis
 - Table 5Groundwater VOC Analysis
 - Table 6Groundwater PHC and PAH Analysis
- Appendix F Historical Groundwater Analyses and Trends
- Appendix G Site Photos
- Appendix H Laboratory Certificates of Analysis

1.0 Introduction

The Reynold's Road waste disposal site (the Site) operates under Amended Environmental Compliance Approval (ECA) No. A442001 issued by the Ministry of Environment, Conservation and Parks (MECP), dated November 10, 2016 (see Appendix A). An application to amend the ECA to acknowledge lands purchased to the north of the Site was submitted to the Director on July 9, 2019.

The Site is a closed landfill and is owned by the Corporation of the Township of Leeds and the Thousand Islands. The Site is located on Lot 18, Concession 2 in the Township of Leeds and the Thousand Islands (TLTI), Ontario (Figure 1, Appendix B). In accordance with the ECA, an annual monitoring report (AMR) is to be completed annually.

Malroz was retained by TLTI to conduct the semi-annual sampling and monitoring at the Site. This document presents our methodology, results and interpretation of these results with respect to the ECA. This report was prepared on behalf of the TLTI, using data collected by Malroz and available information provided by TLTI staff.

1.1 Ownership and Key Personnel

The Site is owned and maintained by the Corporation of the Township of Leeds and the Thousand Islands. Key contacts for the Site are as follows:

Municipal Contact Adam Goheen Director of Operations 1233 Prince Street, P.O. Box 280 Lansdowne, Ontario, K0E 1L0 613-659-2415 ext. 208 directoroperations@townshipleeds.on.ca

Environmental Professional Contact John Pyke, P. Geo Hydrogeologist 308 Wellington St. Kingston, Ontario, K7K 7A8 613-548-3446 ext. 34 pyke@malroz.com

2.0 Background

The geology, hydrogeology, physiography, and hydrology of the Site are described in this section based on our review of collected data including site observations and previous reports on investigations at the Site.

2.1 Description of the Waste Disposal Site

The Reynolds Road Dump (the Site) consists of a one-hectare site with a fill area of approximately 0.4 hectares. MECP records indicate that the Site operated between 1970 and 1971. The Site is located on Lot 18, Concession 2, in the Township of Leeds and the Thousand Islands (former Township of Front of Lansdowne), United Counties of Leeds and Grenville, Ontario. The site is located approximately 1.3 km north of Highway 401 along the west side County Road 3, otherwise known as Reynold's Road (Figure 1, Appendix B). Geodetic coordinates for the centre of the Site as follows (2015 Site survey):

Zone: NAD 83, 18T Easting:419161 m (+/- 0.5 m) Northing: 4915429 m (+/- 0.5 m)

On November 17th, 2016, the property parcel north of the Site was purchased by the Township. The property is adjacent to and north of the previous boundary of the WDS. The acquisition is also part of Lot 18, Concession 2, Geographic Township of Lansdowne.

2.2 Geological Setting

Based on data from the Ontario Geologic Survey, the Site is underlain by Precambrian granitic gneiss (Hewitt, 1964). Exposed bedrock appears at the eastern boundary of the Site, adjacent to Reynold's Road, and bedrock ridges can be observed in areas to the north and south of the Site. Metasedimentary quartzo-feldspathic and gneissic bedrock is located approximately 500 m to the southwest of the Site (Hewitt, 1964).

According to borehole logs and water well records from adjacent properties (Appendix C), the overburden at the Site is comprised of glacio-lacustrine silts and clays that range in thickness from 0 to 5 metres.

2.3 Hydrogeologic Setting

Shallow groundwater is expected to follow the topography of the site, flowing north and west towards the unnamed creek. Elevations of groundwater in the two wells present at the site are higher than the water level of the adjacent creek suggesting groundwater is discharging to the surface water.

Groundwater flow in the bedrock could not be assessed as there are no bedrock wells present at the site.

2019 Annual Monitoring Report	Page 3
Reynolds Road WDS – A442001	File: 1039-107.00

A previous report (Day 2016) identified the presence of five domestic drinking water wells within 500 metres of the site. The report stated that drinking water in the area is sourced from the bedrock aquifer and that the overburden is not reportedly used as a source of potable or agricultural water in the vicinity of the Site. The report further states that there has been no interference reported at any of these domestic wells. A summary of these wells is presented below.

Reynolds	Distance to
Road	Waste Fill (m)
Address	
628	336 south
755	337 north
619	345 south
612	430 south
613	432 south

Drinking Water Wells within 500 metres

Previous AMRs for the Site, completed by others (Day 2016), report a bedrock spring approximately 100 m south of the waste fill area. We understand that this spring flows year-round and that it has historically been used as a source of domestic water. Because this spring is on private property and permission to access has not been granted, the spring has not been included in annual monitoring activities.

2.4 Surface Water Features

Surface water at the Site flows southwest. Its movement is directed past the waste pile by a culvert installed in 2016 which is meant to control erosion and sedimentation. The surface water drains from the Site via an unnamed creek into Knight's Creek. This unnamed creek originates north of the Site and passes under Reynolds Road (Country Road 3) into a small wetland caused by a physiographic depression directly north of the waste pile (Figure 2, Appendix B).

Previous AMRs for the Site completed by others report that, prior to 2015, the creek was eroding the adjacent slope of the waste fill area causing waste material to be deposited into the creek. Waste and fill present in the creek was restricting flow, causing ponding to occur north of the Site. In November 2015, the creek was cleaned of all waste and a culvert was installed into the creek along the edge of the waste fill area to limit erosion of the waste mound and limit leachate interaction with surface waters. We understand that the culvert installation was approved by the Cataraqui Regional Conservation Authority.

Malroz Engineering Inc.

2.5 MECP Review

Comments from the MECP on the 2018 AMR had not been received at the time this report was prepared.

3.0 Description of Monitoring Program

Results of the environmental monitoring program are reported to the MECP on an annual basis by March 31 of the year following the reporting period.

As per the ECA, groundwater monitoring was conducted on two occasions in 2019. These events were conducted on May 2 (spring) and November 26 (fall).

3.1 Well Inspections

The general condition of each well was assessed during the monitoring program before sampling. This included inspecting the casing, piezometer and visible well seal, and noting if the well was properly secured and capped.

3.2 Site Inspection

The general condition of the site was inspected during each monitoring program. This included inspection for leachate seepage around the site and inspection of the final cover on the waste pile.

3.3 Groundwater Monitoring Program

The field work for the 2018 groundwater monitoring and sampling program included the following activities:

- i. Measuring water levels, depth to well bottom, and methane concentrations in the monitoring wells.
- ii. Purging, monitoring and sampling each monitoring well. Groundwater sampling was conducted using low-flow methods. Groundwater samples submitted for metal analyses were field filtered.

There are two overburden monitoring wells at the site (MW1 and MW2). Monitoring well MW1 is located in the northern waste fill area and is screened below the waste in clay, between 5.2 and 6.7 meters below grade (refer to Appendix D). Well MW2 is located in the southwest region of the waste fill area and is screened in the clay beneath the waste between 9.1 and 10.6 meters below grade. Both wells are intended to detect leachate at the Site (Figure 2, Appendix B).

3.4 Surface Water Monitoring Program

Malroz conducted inspections of the adjacent surface water body during the spring and fall per the ECA. Evidence of seeps within the adjacent waterbody were not observed during the inspections. No surface water sampling is required at this Site (MECP correspondence dated June 9, 2015).

3.5 Data Quality Evaluation

Samples were collected using laboratory supplied sample bottles containing preservatives appropriate for each parameter. Samples were submitted to Caduceon Laboratories (Caduceon) for analyses. A list of analyzed parameters is presented in Table 1 (Appendix E).

Caduceon is a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory that uses MECP recognized methods to conduct laboratory analyses. Caduceon reports that they are accredited to conduct the analyses completed for this investigation.

4.0 Discussion of Results

This section discusses the results of the monitoring events that were conducted in 2019 Results of well inspections are presented in Table 2 and groundwater monitoring results are presented in Table 3 (Appendix E). Groundwater water chemistry results are presented in Tables 4, 5 and 6 (Appendix E). Results have been compared to the Ontario Drinking Water Quality Standards (ODWQS) and any observed exceedances are highlighted to allow for visual interpretation. Petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) have been compared to the O. Reg 153/04 "Table 8" generic standards for use within 30m of a water body in potable water groundwater conditions. O. Reg. 153/04 pertains to brownfield sites and does not directly apply to former landfill properties, however applying these standards provide a cursory evaluation.

4.1 Well Inspection

Results of the 2019 well inspection are summarized in Table 2. The condition of the onsite wells was reported as good and met the requirements of O. Reg. 903.

4.2 Site Inspection

Site inspections were conducted during May and November monitoring events, as per the ECA. Malroz staff did not observe any seeps at the site, and the final cover on the waste pile appeared to be in good condition with no signs of erosion.

4.3 Landfill Gas and Water Level Monitoring

Results from groundwater monitoring are presented in Table 3. Methane concentrations were below detectable limits at MW1 and MW2 during both monitoring events.

4.4 Groundwater Interpretation

The overburden groundwater chemistry at the Site is characterized by two wells: MW1 and MW2. Since no wells are located outside of the waste area, the background water quality has not been evaluated. Thus, the groundwater chemistry will be compared to the Ontario Drinking Water Standards, and PHC, VOC, and PAH data will be compared to the O. Reg. 153/04 "Table 8" generic site condition standards for use within 30 metres of a waterbody.

Both wells in our opinion are suitably located to detect leachate as they are positioned directly below the waste fill area. Typical leachate indicating parameters including ammonia, boron, dissolved organic carbon (DOC), chloride and conductivity were used to infer leachate trends at the Site. Results for the leachate indicating parameters were generally consistent between the two monitoring well locations. Concentrations of the aforementioned parameters were at the low end of the range for typical leachate indicating weak leachate influence.

A review of the chemistry results from MW1 and MW2 indicate the following exceedances of ODWS:

• Hardness – MW1 and MW2 (May, November)

Hardness is an operational guideline and not health related. Elevated hardness is common of the region.

Results from VOC, PAH and PHC analyses (Table 5) for samples from MW1 and MW2 were below their detection limits during both 2019 sampling events and met the O. Reg. 153/04 "Table 8" generic site condition standards for use within 30 metres of a waterbody.

Historical groundwater analytical results and trends are provided in Appendix F.

4.5 Reasonable Use Policy

Reasonable Use Limits (RULs) for the Site have not been determined as no background well is available.

5.0 Conclusions & Recommendations

The Site was reportedly in operation starting in 1970 and closed in 1971. Two groundwater monitoring wells were installed at the Site in 2016. Based on a comparison of groundwater elevations to water elevations in the adjacent creek, water is expected to discharge to surface water. However, given the lack of a third well, the exact flow direction of groundwater cannot be triangulated and is unknown.

Comparison to typical leachate characteristics suggests weak to no leachate plume at the Site.

VOC results from MW1 and MW2 have been below detectable limits since the wells were installed in 2016.

Exceedances of the OWDQS for hardness were observed in MW1 and MW2 during both events in 2019, however, the elevated results may be related to regional geology. Concentrations of PAHs and PHCs were less than detection limits and met the O. Reg. 153/04 "Table 8" generic site standards for use within 30 metres of a waterbody.

The following recommendations are provided for the Reynold's Road WDS monitoring program:

- 1. Annual waste disposal site inspections should be completed in compliance with condition 2.2.
- 2. Given that the site has been closed since 1971, ground water results indicate little to no leachate impacts in the vicinity of the waste, and that groundwater trends for the leachate indicators (ammonia, boron, dissolved organic carbon (DOC), chloride and conductivity) have been stable or decreasing since 2016 or more, the site has likely reached its final maturation and stabilization phase. Therefore we recommend that sampling at this site be discontinued. Sampling may be resumed should adverse conditions be observed during the site inspections.

6.0 References

Day, A. (2016), Groundwater Assessment Report (ECA No. 442001), Township of Leeds and the Thousand Islands.

Hewitt, D.F. (1964) Geological notes for maps Nos. 2053 and 2054 Madoc-Gananoque Area, Ministry of Natural Resources, GC 12, 33p (reprinted 1974). Accompanied by Maps 2053 and 2054, scale 1:126,720

Malroz Engineering Inc. (2017), 2016 Annual Monitoring Report, Reynold's Road Waste Disposal Site, Township of Leeds and Thousand Islands.

Malroz Engineering Inc. (2018), 2017 Annual Monitoring Report, Reynold's Road Waste Disposal Site, Township of Leeds and Thousand Islands.

Malroz Engineering Inc. (2019), 2018 Annual Monitoring Report, Reynold's Road Waste Disposal Site, Township of Leeds and Thousand Islands.

Ontario Drinking Water Standards (ODWS) from Ontario Regulation 169/03 of the Safe Drinking Water Act (2002). Last amendment: O. Reg. 373/15.

Ministry of the Environment and Energy (1994), Provincial Water Quality Objectives (PWQO), Water Management Policies & Guidelines.

Table 1: Summary of Typical Leachate Characteristics, from the Ministry of Environment and Energy (MOEE)'s Landfill Guidance Manual, 1993.

Ministry of the Environment (2010), Technical Guidance Document: Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water.

Appendix A Amended Environmental Compliance Approval No, 442001

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A442001 Issue Date: November 10, 2016

The Corporation of the Township of Leeds and the Thousand Islands 1233 Prince St Lansdowne Post Office Box, No. 280 Leeds and the Thousand Islands, Ontario K0E 1L0

Site Location: Reynolds Road Dump (Closed) Reynolds Road Lot 18, Concession 2 Leeds and the Thousand Islands Township, United Counties of Leeds and Grenville

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

for the use and operation of Waste Disposal Site (landfill)

For the purpose of this environmental compliance approval, the following definitions apply:

" *Approval* " means this Environmental Compliance Approval and any Schedules to it, including the application and supporting documentation listed in Schedule "A";

" *Director* " means any Ministry employee appointed in writing by the Minister pursuant to section 5 of the EPA as a Director for the purposes of Part II.1 of the EPA;

" *District Manager*" means the District Manager of the local district office of the *Ministry* in which the *Site* is geographically located;

" EPA " means Environmental Protection Act , R.S.O. 1990, c. E. 19, as amended;

"Ministry" means the Ontario Ministry of the Environment and Climate Change;

" **Owner**" means any person that is responsible for the establishment or operation of the *Site* being approved by this *Approval*, and includes The Corporation of the Township of Leeds and the Thousand Island its successors and assigns;

" **Regional Director** " means the Regional Director of the local Regional Office of the *Ministry* in which the *Site* is located; and

"Regulation 232" means Ontario Regulation 232/98 (New Landfill Standards) made under the *EPA*, as amended from time to time;

"Regulation 347 " means Regulation 347, R.R.O. 1990, made under the EPA, as amended;

"Regulation 903" means Regulation 903, R.R.O. 1990, made under the OWRA, as amended;

" *Site* " means the entire waste disposal site, located at west side of Reynolds Road, Lot 18, Concession 2, Leeds and the Thousand Islands Township, United Counties of Leeds and Grenville

" FBAL " means Fill Beyond Approved Limits

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL

Compliance

1. The *Owner* and *Operator* shall ensure compliance with all the conditions of this *Approval* and shall ensure that any person authorized to carry out work on or operate any aspect of the *Site* is notified of this *Approval* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.

2. Any person authorized to carry out work on or operate any aspect of the *Site* shall comply with the conditions of this *Approval*.

In Accordance

3. Except as otherwise provided by this *Approval*, the *Site* shall be designed, developed, built, operated and maintained in accordance with the documentation listed in the attached Schedule "A".

Interpretation

4. Where there is a conflict between a provision of any document listed in Schedule "A" in this *Approval*, and the conditions of this *Approval*, the conditions in this *Approval* shall take precedence.

5. Where there is a conflict between the application and a provision in any document listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the *Ministry* approved the amendment.

6. Where there is a conflict between any two documents listed in Schedule "A", the document bearing the most recent date shall take precedence.

7. The conditions of this *Approval* are severable. If any condition of this *Approval*, or the application of any condition of this *Approval* to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this *Approval* shall not be affected thereby.

Other Legal Obligations

8. The issuance of, and compliance with, this Approval does not:

(a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or

(b) limit in any way the authority of the *Ministry* to require certain steps be taken or to require the *Owner* and *Operator* to furnish any further information related to compliance with this *Approval*.

Adverse Effect

9. The *Owner* shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the *Site*, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.

10. Despite an *Owner* or any other person fulfilling any obligations imposed by this *Approval* the person remains responsible for any contravention of any other condition of this *Approval* or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect to the natural environment or impairment of water quality.

Change of Ownership

11. The *Owner* shall notify the *Director*, in writing, and forward a copy of the notification to the *District Manager*, within 30 days of the occurrence of any changes in the following information:

- (a) the ownership of the Site;
- (b) the Operator of the Site;
- (c) the address of the Owner or Operator; and

(d) the partners, where the *Owner or Operator* is or at any time becomes a partnership and a copy of the most recent declaration filed under the *Business Names Act*, R. S. O. 1990, c. B.17, shall be included in the notification.

12. No portion of this *Site* shall be transferred or encumbered prior to or after closing of the *Site* unless the *Director* is notified in advance and sufficient financial assurance is deposited with the *Ministry* to ensure that these conditions will be carried out.

13. In the event of any change in ownership of the *Site*, other than change to a successor municipality, the *Owner* shall notify the successor of and provide the successor with a copy of this *Approval*, and the *Owner* shall provide a copy of the notification to the *District Manager* and the *Director*.

Certificate of Requirement/Registration on Title

Registration on Title Requirement

14. Prior to dealing with the property in any way, the *Owner* shall provide a copy of this *Approval* and any amendments, to any person who will acquire an interest in the property as a result of the dealing.

15(a) Within thirty (30) calendar days from the date of issuance of this *Approval*, the *Owner* shall submit to the *Director* a completed Certificate of Requirement which shall include:

(i) a plan of survey prepared, signed and sealed by an Ontario Land Surveyor, which shows the area of the *Site* where waste has been or is to be deposited at the *Site;*(ii) proof of ownership of the *Site;*

(iii) a letter signed by a member of the Law Society of Upper Canada or other qualified legal practitioner acceptable to the *Director*, verifying the legal description provided in the Certificate of Requirement;

(iv) the legal abstract of the property; and

(v) any supporting documents including a registerable description of the Site.

(b) Within fifteen (15) calendar days of receiving a Certificate of Requirement authorized by the *Director,* the *Owner* shall:

(i) register the Certificate of Requirement in the appropriate Land Registry Office on the title to the property; and

(ii) submit to the *Director* and *District Manager*, written verification that the Certificate of Requirement has been registered on title.

Inspections by the Ministry

16. No person shall hinder or obstruct a *Provincial Officer* from carrying out any and all inspections authorized by the *OWRA*, the *EPA*, the *PA*, the *SDWA* or the *NMA*, of any place to which this *Approval* relates, and without limiting the foregoing:

(a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this *Approval* are kept;

(b) to have access to, inspect, and copy any records required to be kept by the conditions of this *Approval;*

(c) to inspect the *Site*, related equipment and appurtenances;

(d) to inspect the practices, procedures, or operations required by the conditions of this *Approval;* and

(e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this *Approval* or the *EPA*, the *OWRA*, the *PA*, the *SDWA* or the *NMA*.

17. The Site is closed and is no longer permitted to accept the waste at the Site.

2.0 LANDFILL MONITORING

Compliance

1. The *Site* shall be operated in such a way as to ensure compliance with the Provincial Water Quality Objectives included in the July 1994 publication entitled *Water Management Policies, Guidelines, Provincial Water Quality Objectives,* as amended from time to time or limits set by the *Regional Director,* for the protection of the surface water at and off the *Site.*

Inspection

2. The entire Site shall be inspected by a qualified person to identify the presence of any leachate seepage; to ensure the integrity of the final cover and that the activities at the *Site* are not causing any adverse effects. Any deficiencies discovered as a result of the inspection shall be remedied immediately. The inspections required under this condition shall be conducted at least semi-annually when the Site is not covered in snow

Annual Report

3. Subject to Condition 2.7 of the Approval and until such time that the Approval is amended to reflect otherwise, a written report on the monitoring of the *Site*, shall be completed annually (the "Annual Report"). The Annual Report shall be submitted to the *District Manager*, by March 31st of the year following the period being reported upon.

4. The Annual Report shall include but not be limited to the following information:

(a) the results and an interpretive analysis of the results of all leachate, groundwater, and surface water, including an assessment of the need to amend the monitoring programs;

(b) site plans showing the final contours of the Site and vegetative cover;

(c) a discussion of any problems encountered at the Site and corrective action taken;

(d) a report on the status of all monitoring wells and a statement as to compliance with *Regulation 903;*

(e) any other information with respect to the *Site* which the *District Manager* may require from time to time; and

(f) a summary and analysis of all hydraulic and geochemical monitoring results.

(g) the inspection findings as per condition 2.2 and corrective actions taken to address any identified concerns at the Site

Groundwater Wells and Monitors

4. The *Owner* shall ensure that all groundwater monitoring wells which form part of the monitoring program are properly capped, locked and protected from damage.

5. All monitoring wells shall be inspected at least twice per year during inspections. Any groundwater monitoring well included in the on-going monitoring program that are damaged shall be assessed, repaired, replaced or decommissioned by the *Owner*, as required.

(a) The *Owner* shall repair or replace any monitoring well which is destroyed or in any way made to be inoperable for sampling such that no more than one regular sampling event is missed.

(b) All monitoring wells which are no longer required as part of the groundwater monitoring program, and have been approved by the *District Manager* for abandonment, shall be decommissioned by the *Owner* in accordance with *Regulation 903*. A report on the decommissioning of the well shall be included in the Annual Report for the period during which the well was decommissioned.

6. In addition to the monitoring conducted as per item 1 of Schedule "A", the owner shall conduct groundwater monitoring on two additional occasion in 2016 .Groundwater sampling shall be conducted for all parameters listed in Table 1 of Item 1 of Schedule "A".

7. By no later than January 31, 2017, the Owner shall submit to the Director for approval and copies to the District Manager, a groundwater monitoring report on the monitoring conducted as per Condition 2.6 of Approval, which includes but not necessarily limited to the monitoring results, an interpretation of the monitoring data and recommendations regarding ongoing monitoring and ongoing reporting at the Site.Once the groundwater monitoring report is received, the Ministry will determine if further monitoring and reporting is required and amend the Approval accordingly.

3.0 Fill Beyond Approved Limits

1. Within six (6) months of issuance of this Approval, the Owner shall acquire the lands for areas designated as FBAL and shall submit an application for an amendment to the Director for approval for FBAL to be added to the Site.

2.(a) Within thirty (30) calendar days after acquiring land referred in condition 3.1, the *Owner* shall submit to the *Director* a completed Certificate of Requirement which shall include:

(i) a plan of survey prepared, signed and sealed by an Ontario Land Surveyor, which shows the area of the *Site* where waste has been or is to be deposited at the *Site;*(ii) proof of ownership of the *Site;*

(iii) a letter signed by a member of the Law Society of Upper Canada or other qualified legal practitioner acceptable to the *Director*, verifying the legal description provided in the Certificate of Requirement;

(iv) the legal abstract of the property; and

(v) any supporting documents including a registerable description of the Site.

(b) Within fifteen (15) calendar days of receiving a Certificate of Requirement authorized by the *Director,* the *Owner* shall:

(i) register the Certificate of Requirement in the appropriate Land Registry Office on the title to the property; and

(ii) submit to the *Director* and *District Manager*, written verification that the Certificate of Requirement has been registered on title.

SCHEDULE "A"

1. Report dated June 2016 titled "Groundwater Assessment", Reynold Road Dump prepared by Andrew Day, P.Geo.

The reasons for the imposition of these terms and conditions are as follows:

1. The reason for Conditions 1.3 is to ensure that the Site is designed, operated, monitored and

maintained in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.

- 2. The reason for Conditions 1.1,1.2, 1. 4. 1. 5, 1.6,1.7, 1.9, 1.10 is to clarify the legal rights and responsibilities of the Owner under this ECA.
- 3. Conditions 1.8 is included to ensure that the appropriate Ministry staff have ready access to information and the operations of the Site, which are approved under this Certificate.
- 4. Conditions 1.14 and 1.15 are included, pursuant to subsection 197(1) of the EPA, to provide that any persons having an interest in the Site are aware that the land has been approved and used for the purposes of waste disposal.
- 5. The reasons for Condition 1.16 is to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this ECA.
- 6. The reasons for Conditions 1.11 and 1.12 are to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the Director is informed of any changes
- 7. Condition 2(1) is included to provide the surface water limits to prevent water pollution at the Site.
- 8. The reasons for Condition 2(2) and 2(3) are to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing site activities and for determining the effectiveness of site design.
- 9. Conditions 2(4) and 2(5) are included to ensure the integrity of the groundwater monitoring network so that accurate monitoring results are achieved and the natural environment is protected.
- 10. Conditions 2 (6) and 2 (7) are included to require the Owner to demonstrate that the Site is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.
- 11. Reason for condition 3(1) is to ensure the land designated as FBAL is purchased by the township and the approval is amended to reflect the correct site area
- 12. The reason for condition 3(2) is to ensure that purchased land is registered on title.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A442001 issued on June 23, 1971

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

 The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
 The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5	AND	The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5
--	-----	--

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 10th day of November, 2016

Dale Gable, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

HV/

c: District Manager, MOECC Kingston - District Field Alert, The Corporation of the Township of Leeds and the Thousand Islands
Appendix B Figures

Appendix C Borehole Logs and Water Well Records from Adjacent Properties

County or Territorial District	Tater	epartment of M -Well	FEB GEGLUGI Act, 1954DEPASTM	2 8 195 GAL BELGAR INT OF AIRES INT OF AIRES INT OF AIRES	Nº 1762.
(day)	(month)	(year)			
Pipe and Casing			[Pumping Test	
Casing diameter(s)		Pun Pun	nping rate	R. fram	•
Well Log				Water Record	
Overburden and Bedrock Record	From ft.	To ft.	Depth (s) at which water (s) found	No. of feet water rises	Kind of water (fresh, salty, or sulphur)
granita	1.40	57 /1	484	46.68	park
For what purpose(s) is the water	to he used?				W
Is water clear or cloudy? Is well on upland, in valley, or on Drilling firm Address Name of Driller	hillside?	llaido T	Loc In diagram below road and lot line.		

		MINISTRY OF THE The Ontario Wate	er Resources A	Act	e se estas de la composición de la comp La composición de la c La composición de la c	316 81
			LR	ECOR	D	SIC 01
ONTARIO	 PRINT ONLY IN SPACES PRO CHECK ⊠ CORRECT BOX WH 		3605	MUNICIP	14 CON	
COUNTY OF DISTRICT	TOWNS	HIP, BOROUGH, CITY, TOWN, VILLAGE	SUNE	90N. BLOCK. TRACT	URYEY, ETC.	LOT 25-27
		RRI	Lan	sdowne	DAY MO	9 ⁴⁸⁻⁵³ yr <u>7</u> 3
	18 419112	4915551 4	c. elevation	RC. BASIN CODE	MAY 05, 19	™ 75 59
				GENERAL DESCRIPTION	DI	EPTH - FEET
GENERAL COLOUR RROWN					FROM	TO
Red B	lack &	anite			5	125
				17		
				<u></u>		
31 00050						
	4 15 21 R RECORD (51)	CASING & OPEN HOLE	RECORD	54 SIZE (S) OF OPENING (SLOT NO.)	65 31-33 DIAMETER 34-	-38 LENGTH 39
ATER FOUND AF - FEET	KIND OF WATER DIAM FRESH 3 ULPHUR 14	MATERIAL WALL THICKNESS INCHES	DEPTH - FEET FROM TO	C (SLOT NO.)	INCH DEPTH TO OF SCREEN	TOP 41-44
12 2	FRESH 3 SULPHUR 19	1 STEEL 12 2 C GALVANIZED 3 CONCRETE	0 0022		GING & SEALING RE	
	SALTY 4 MINERAL FRESH 3 SULPHUR 24	4 [] OPEN HOLE	20-23	FROM TO	MAGERIAL AND TYPE	(CEMENT GROUT EAD PACKER, LTC.)
25-28 1f	SALTY 4 MINERAL FRESH 3 SULPHUR 29 SALTY 4 MINERAL	3 CONCRETE 4 OPEN HOLE 1 STEEL 26	2925	010 ⁻¹³ 02 2 ⁻¹⁷ 18-21 22-25	Camer	X
30-33 1 [] F	FRESH 3 SULPHUR 34 80 SALTY 4 MINERAL	2 GALVANIZED 3 CONCRETE 4 OPEN HOLE		26-29 30-33	80	
1 U PUMP 2	D 10 PUMPING RATE	11-14 DURATION OF PUMPING		LOCATION	N OF WELL	NF
STATIC LEVEL	water Level 25 end of Water Levels DURI PUMPING	GPM HOURS HOURS HIN		AGRAM BELOW SHOW DIST LINE. INDICATE NORTH I		PANES
	22-24 IS MUNUTES 30 MINU 4 7 726-28 FEET FEET	TES 45 MINUTES 60 MINUTES 23-31 FELT FEET FEET			AN	
PLET	38-41 PUMP INTAKE SET AT	FEET 1 CLEAR 2 CLOUDY		«/ /	Ŷ	
SHALLOW		A3-45 RECOMMENDED 46-4 PUMPING 7 GPN				# 2
50-53	4 I XWATER SUPPLY S E	CITY ABANDONED, INSUFFICIENT SUPPLY				1
FINAL STATUS OF WELL	2 OBSERVATION WELL 6] ABANDONED, POOR QUALITY] UNFINISHED	~/	WHAT A	zmi //	
55-5		DMMERCIAL JNICIPAL		-	$\frac{1}{1}$	
USE O		IBLIC SUPPLY OCLING OR AIR CONDITIONING 9 🔲 NOT USED	/	/ /1	/ 🏷	
METHOD	7 CABLE TOOL ROTARY (CONVENTIONAL)	6 BORING 7 DIAMOND	1 /			\nearrow
OF	3 ROTARY (REVERSE) 4 ROTARY (AIR) 5 AIR PERCUSSION	8 _ JETTING 9 _ DRIVING			₩ 300'X	
NAME WELL CO		RILLING 2533	DATA SOURCE	58 CONTRACTOR	59-62 DATE RECEIVED	63-68
	> Mall -				TOR 14	0174
NAME OF DRILLER	OR BORER REARCH	FO ST33	S REMARKS:		7	P.K.
SIGUATURE OF	NTRACTOR		OFFICE		(WI
AINISTRY OF	THE ENVIRONMENT C		 ,			FORM 7 07-

	`		TRY OF THE EN		د معنوب بیشد ایران	ate	31081
(9	7), 🗤		ntario Water F		CORD	3ter 5	アッ)
Onta	ario			3606693			
	1. PRINT ONLY 1	N SPACES PROVIDED RRECT BOX WHERE APPLICABLE TOWNSHIP, BOROUGH, CIT		1	CON., BLOCK, TRACT, SURVEY,		22 23 24
COUNTY	LEEDS	F7	ofth	MNSDOWN			0/8
		F	4 h.A	NS DOW	NE	DAY 29 NO	8_ yr 76
	10	<u>"15</u>	<u>030</u>	0315			
	MOST		······			DEP	IH - FEET
GENERA	COMMON MATERIAL	OTHER MA			GENERAL DESCRIPTION	FROM	TO
6.	ROWN DOTL	7= 7	LACK			15	98
1	LO CHAN		EACK_				
		. ~.	•				
		<u>.</u>					
31	0015602 11 00	9872)					
32				43 [SIZE (S) OF OPENING	65 31-33 DIAMETER 34-38	75 80 LENGTH 39-40
	FOUND KIND OF WATER	DIAM MATERIAL	THICKNESS	EPTH - FEET	SLOT NO)	INCHES DEPTH TO TO	FEET
209	10-13 1 FRESH 3 SULPHUR 1 2 SALTY 4 MINERAL	A DOM 1 1 STEEL 2 GALVANIZED	12 INCHES	× τ∘ ∞λ'5		OF SCREEN	FEET
/ / /c	15-18 1 _ FRESH 3 _ SULPHUR 1 2 _ SALTY 4 _ MINERAL	GALVANIZEE GALVAN	1/88 6		61 PLUGGING	& SEALING REC	
	20-23 1 FRESH 3 SULPHUR 2 2 SALTY 4 MINERAL	4 17-18 1 STEEL 2 GALVANIZEE 3 CONCRETE	2	20098	FROM TO	ATERIAL AND TYPE LEAG	EMENT GROUT.) PACKER, ETC.)
	25-28 1 _ FRESH 3 _ SULPHUR 2 2 _ SALTY 4 _ MINERAL	4 ₩ OPEN HOLE 24-25 1 □ STEEL	26	27-30	18-21 22-25	RILL Cutt	1 N 9 5
	30-33 ; FRESH 3 SULPHUR 3 2 SALTY 4 MINERAL	4 60 2 □ GALVANIZEC 3 □ CONCRETE 4 □ OPEN HOLE			26-29 30-33 80		
A.	IMPING TEST METHOD 10 PUMPING		15-16 17-18		LOCATION O	F WELL	
\square	WATER LEVEL 25	1	PUMPING	IN DIAGR LOT LINE	AN BELOW SHOW DISTINCE	S OF WELL FROM ROAD	
TEST		26-28 17 29-31 7 7	ES 4 60 MINUTES	the second			
. 9NI	F FLOWING, 38-41 PUMP INT	70	FEET FEET		1.12	1</td <td>11</td>	11
PUMPING TEST	GPM. ECOMMENDED PUMP TYPE RECOMNET PUMP	NDED 43-45 RECOMMENDE			/- Ho	-1	
	SHALLOW DEEP SETTING -53	SPECIFIC CAPACITY	GPM		/ ///	$/^+$	
	FINAL 2 OBSERVATION	WELL 6 🗌 ABANDONED, PO				4	/ M'
	STATUS DF WELL 55-55 CONSERVATION 3 TEST HOLE 4 RECHARGE WE						
	WATER 3 LIRRIGATION	5 🗍 COMMERCIAL 6 🗍 MUNICIPAL 7 📄 PUBLIC SUPPLY		/			707
	USEC I . DINDUSTRIAL	B COOLING OR AIR CO	NDITIONING NOT USED				
		6 🗍 BORING VENTIONAL) 7 🗍 DIAMON		1/2	7 18 1		
	OF 3 C ROTARY (REVI DRILLING A C ROTARY (AIR) S AIR PERCUSSI	9 🔲 DRIVIN			10 19		
	AAME OF WELL CONTRACTOR		LICENCE NUMBER	DRILLIRS REMARKS:	58 CONTRACTOR 59-62	DATE RECEIVED 3 112 7	B ⁶³⁻⁶⁸ 80
ACTOR	BENVER NEL		2333	DATE OF INSPECTI		V.	v
TRAC	RR 2 MALL	ORUTOWN	LICENCE NUMBER			ph	PD
CONTR	SIGNATURE OF CONTRACTOR	SUBMISSION DATE	2333	OFFICE		CSS.53	WI
Ľ	1 Juion		10. <u>11 yr76</u>	0		FOF	M 7 MOE 07-091
	MINISTRY OF THE EN	VIKUNMENT COPY			ſ	SS-S8	

	на старија Н			ENVIRONMENT r Resources A			120	
E	WA ⁻	TER	WEL		ECO	RD	318/	, /ZW
Ontario	1. PRINT ONLY IN SPACE 2. CHECK 🛛 CORRECT B			360665		6.0.0.6		22 23 74
COUNTY OR DISTRICT		TOWNSHIP, BOROUGH. C	ITY, TOWN, VILLAGE	OWN		TRACT. SURVEY, ETC.	COMPLETED	036
		30	Glenn	road P	lace	227 - 114 (L). DAY	22 мо. 4	2YF76
1 2 10	12		70.	1 6270				47
GENERAL COLOUR	MOST		AND BEDR	OCK MATERIA	LS (SEE INSTRUC		DEP	TH - FEET
	NNON MATERIAL	Rubh	LE BO	uhor RS	<u>,</u>		0	11
BROWN	SANDS	Rubb tone		h	AVER	ED	11	185
		<u></u>				<u> </u>		
31 001760	2/3 01856	1874						
41 WATER F	RECORD	51) CASING	& OPEN HOL		SIZE (S) OF O (SLOT NO)	PENING 31-33	65 DIAMETER 34-3 INCHE	88 LENGTH 39-40
AT - FEE1		DIAM. NCHES 10-11 IVO STEEL	WALL THICKNESS INCHES	DEPTH - FEET FROM TO ОО2 5%	MATERIAL A	ND TYPE	DEPTH TO T OF SCREEN	
15-18 1 _ FRES	H 3 _ SULPHUR 19	10-11 11 STEEL 21 GALVANIZ 3 CONCRET 4 OPEN HO	E YXX	0 75	61	PLUGGING &	SEALING RE	CORD
20-23 1 [] FRES	Y 4 _ MINERAL	17-18 1 _ STEEL 2 _ GALVANI 3 _ CONCRET	19 ZED	n50105	DEPTH SET AT	TO MATER	LEAL AND TYPE	CEMENT GROUT. AD PACKER, ETC.)
25-28 I _ FRES	H 3 □ SULPHUR 29 Y 4 □ MINERAL	2 4 1 OPEN HO 24-25 1 STEEL 2 GALVANI	26	25 9/85	18-21	25 PRIL	L Cottin	195
	H 3 SULPHUR 34 60 Y 4 MINERAL	3 CONCRET	E		26-29	30-33 80		
71 PUMPING TEST METHOD	10 PUMPING RATE BAILER 0008	TI-14 DURATION	15-16 00 17- HOURS MI			ATION OF		AD AND
LEVEL PU	R LEVEL 23 ND OF WATER LEVE MPING 22-24 15 MINUTES	125 DURING 30 MINUTES 45 MIN		LOT	LINE. INDICATI	NORTH BY ARROW	<i>I</i> .	
19-21 10	FEET FEET	129-31 FEET 024	6	37 ET 42	rea	$1 \sim 1$		11
U IF FLOWING, GIVE RATE	gpm 18	5 FEET 1 2 C	NDED 3 46	<u>an k</u>	3		+-+	1
G SHALLOW	DEEP SETTING	FEET PUM DIG RAT	568 .		(-
FINAL 54	WATER SUPPLY 2005ERVATION WELL	5 🗌 ABANDONED, 6 🗋 ABANDONED.	INSUFFICIENT SUPPL POOR QUALITY	7 7	37	36	35	
OF WELL /	3 TEST HOLE 4 RECHARGE WELL	7 UNFINISHED						
WATER	2 STOCK 3 IRRIGATION	S COMMERCIAL S MUNICIPAL 7 PUBLIC SUPPLY B COOLING OR AIR	CONDITIONING		<u> </u>			
USE UT	O OTHER	9 [] NOT USED					
METHOD -	1 CABLE TOOL 2 ROTARY (CONVENTIO 3 ROTARY (REVERSE)	ITAL 🗌 🕷	NOND		100'	P		
DRILLING	A D ROTARY (AIR)	9 [] DRIV		DRILLERS REM	ARKS 58 CONTR			63-68 80
BEAVER	MANO Dr	14KINg	LICENCE NUMBER	DATA SOURCE		2333	- '9''112	?6
NAME OF DRILLE OF	A A CAR	ytown	LICENCE NUMBER				'n	P T
NAME OF DRILLE OF SIGNATURE OF COM	TRO DE	SUBMISSION D	2333 ATE	OFFICE				wi
MINISTRY	OF THE ENVI		<u></u>	6			FC	DRM 7 MOE 07-091

😵 Ont	ario Minis	try of nvironment	<u>a 021663</u>	6	umber below)	Regulation 903	Well Record Ontario Water Resources Act
Instructions fo	r Completing Fo	orm	AOZIGI	03		· · · · · · · · · · · · · · · · · · ·	page of
 For use in th All Sections Questions re All metre m 	e Province of Or must be complete garding complete	ntario only. This d ed in full to avoid c ng this application all be reported to	lelays in processing can be directed to th 1/10 th of a metre.	. Further ins	tructions and	Ministry Use	16-235-6203.
	cation (County/Dist		1000	10mp 1120			~19
RR#/Street Number	NAD Zone	D . Easting	Ci Northing U	ity/Town/Villa nit Make/Moc	ge lel Mode	Site/Compar	tment/Block/Tract etc.
	8 3	4/949/ ock Materials (se		MAGEL	An	Differ	rentiated, specify
General Colour	Most common mate		her Materials		General	Description	Depth Metres From To
Brown	Clay	-	,a				0 3.4
Red	Granite		1997 - L.				3.4 44.1
Grey	11						44.1 43 43 48.8
Ked	Granite						15 7010
			Construction Reco			Toel	t of Well Yield
Hole Dia Depth Metre	Diameter	nside	Wall	Depth	Metres	Pumping test method	Draw Down Recovery
From To	Centimetres	diam Material		From	То		Time Water Level Time Water Level min Metres min Metres
06	25.4	timetres	Casing			Pump intake set at- (metres) 41,5	Static Level - 3
6 49.	+ 15.25	VSteel Fi				Pumping rate - (litres/min) 54	1 1.8 1 12.2
Witten D	/5	9 Plastic Co	oncrete,48	0	6	Duration of pumping	2 1,4 2 10,9
Water Rowing Water Rowing Water found at Metres	<pre>cord <ind of="" pre="" water<=""></ind></pre>	Galvanized	preglass			$2_{hrs} + 0_{min}$	
13, 7 Fre			-			Final water level end of pumpingmetres	3 3 3 9.4
Gas Sal	ty Minerals					Recommended pump	4 3.7 4 8.2
145 m Fre		Steel Fi	-			Shallow Deep	5 4,2 5 7.6
Gas Sal	ty Minerals	Galvanized				depth. <u>46</u> metres Recommended pump	
Gas Sal			Screen			rate. (litres/min)	10 7.6 10 5.5 15 9.7 15 4
Other:		diam Steel Fi	-			If flowing give rate -	20 11,2 20 2,7 25 12,4 25 1,5
After test of well yie		Galvanized				(litres/min) If pumping discontin- ued, give reason.	30 13, 30 ,6
Other, specify_		· · · · · · · · · · · · · · · · · · ·	No Casing or Scre	en		ded, give reason.	40 / 3, 4 40 , 3
Chlorinated	s 🗌 No	Open hole		6	48.8		50 /3.7 50 - 3 60 /3.7 60 - 3
PI	ugging and Sealin	ng Record	Annular space 🔲 Ab	andonment		Location	
Depth set at - Metre From To	s Material and type (b	entonite slurry, neat cem		e Placed metres)	In diagram below Indicate north by		om road, lot line, and building.
60	CEMEN	NT SLU.	ery 2	2	- 	10	DEM WELL
		·····				×	73 M
					Λ	5	
		• •				5 1	
		nod of Construction	and the second		• • • • • •	S. CKM	
Cable Tool	Onal) Carry (air)			Digging Other		L'	
🔲 Rotary (reverse)	Boring	Water Use	ving				
Domestic	Industrial		blic Supply	Other		401	
Stock	Commercial		t used oling & air conditioning		Audit No.		te Well Completed
	Fi	inal Status of Well	ala and a second and	ned, (Other)	<u> </u>	21908 Viner's information Da	te Delivered YYYY MM DD
Observation wel		ufficient supply	watering		package delivere		te Delivered
Test Hole	Abandoned, poo Well Contrac	r quality Re	placement well ormation			Ministry Us	
Name of Well Contr	Jox Well I		Well Contractor's L	icence No.	Data Source		ontractor 9909
Business Address	street name, number,		•	· · · · · · · · · · · · · · · · ·	Date Received	APR 1 8 2005	te of Inspection OYYYY MM DD
AS8D Name of Well Tech	nician (last name, first	<u>Glenbur</u> name)	Well Technician's L	icence No.	Remarks		ell Record Number
Signature of echn	ix John		Date Submitted	MM DD			
x Kon	the a			<u> </u>		Cotto	formule est disponible en français
0506E (09/03)		Contractor's Cop	y 🔲 Ministry's Copy		ier's Сору 🛄	Celle	ormalo ou aloponible on nangalo

TOWNSHIP OF LEEDS AND THE THOUSAND ISLANDS

BC Rec

Depth

SS

Drilling Date:27-Apr-2016Drill Method:Hollow Stem AugerDriller:Aardvark DrillingLogger:A. Day

Soil Description

Project: Reynolds Road Dump

Borehole: MW1

TOC Elevation: 99.97mASLEasting:0419160Northing:4915430Well Tag:A175197 (cluster C24081)

Well Construction

TΟ\	ΝN	ISF	ΗP	OF	LEEDS AND		Project:	Lansdowne	WDS
					D ISLANDS		Borehole:	15-1 (replac	ce 91-2)
	Drill	ling Me ler:	Date etho	e: 21 d: Ho Aa	1-Sep-2015 ollow Stem Auger ardvark Drilling . Day		TOC Elevatior Easting: Northing: Well Tag:	1:	0416333 4916429 A175282 (1)
Depth	S	S	BC	Rec	Soil Descript	ion		Well Constru	uction
1.0 m		1		100%					
Ground									
Surface									
1.0 m									
2.0 m									
3.0 m									
4.0 m									
5.0 m									
6.0 m									
7.0 m							1		
7.0 m									
8.0 m									

 		M	lodified	Unified	Classifi	cation \$	System for Soils		
	MAJOR DI	IVISION	GROUP SYMBOL	GRAPH SYMBOL	COLOR CODE	TYPI(CAL DESCRIPTION	CLA C	BORATORY SSIFICATION RITERIA
	35.	CLEAN GRAVELS	GW	() No	RED	LITTLE (RADED GRAVELS, OR NO FINES	C, 0 <u>D</u> , 0 D, 0	$4 C_{\mu} \square \frac{(D_{10})^{2}}{D_{\mu} \square D_{\mu}} \square to 3$
00 의단/진	ELS NGCOAR DER THAN EVE	(LTTLE OR NOFINES)	GP		RED	AND GRA	GRADED GRAVELS, AVEL-SAND MIXTURES, JR NO FINES	NOT ME	ET ING THE REQUIREMENTS
SOLS	CR. AVIELS MORETHAN HAUF COARSE ORANSE LARDER THAN NO 4 STEVE	DIRTY GRAVELS	GM		YELLOW		AVELS, GRAVEL- LT MIXTURES	CONTENT OFFINES	ATTERBERG LIMITS BELOW "A" LINE OR PI. LESS THAN 4
AINED MI CAN	NCR	(WITH SOME FINES)	GC	//	YELLOW		GRAVELS, GRAVEL- LAY MIXTURES	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE PI. MORE THAN 7
COARSE GRAINED SOLLS MORETHAN HALFBY WEDHIT LARDER THAN 201 SEVED	144) 344	CLEAN SANDS	sw		RED		RADED SANDS, GRAVELLY LITTLE OR NO FINES	្ច <u></u>	$6 C_{c} \square \frac{(D_{w})^{1}}{D_{w} \square D_{w}} \square w 3$
COAF	NDS NUSS NUSS NUSS NUSS NUSS NUSS NUSS N	(LITTLE OR MOFINES)	SP		RED		GRADED SANDS, JR NO FINES		EETING THE CREQUIREMENTS
T390M	AND 4 SILL AND 2015 THAN THUS THAN THE SAME SAME SAME THAN THE SAME SAME SAME SAME SAME SAME SAME SAM	DIRT Y SANDS	SM		YELLOW	SILTYSA MIXTURI	NDS, SAND-SILT ES	CONTENT	ATTERBERG LIMITS BELOW "A" LINE PI. LESS THAN 4
	~0	(WTTH SOME FINES)	SC		YELLOW	CLAYEY MIXTURI	SANDS, SAND-CLAY ES	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE PI. MORE THAN 7
	TS MICINE MICINE MICINE BIT	₩_< 50%	ML		GREEN	SANDS, F	NIC SILTS AND VERYFINE ROCK FLOUR, SILTY JF SLIGHT PLASTICITY		SSIFICATION BASED UPON
3350	SLLTS SELOW -A"CINE NEOCORCE COMENT COMENT	₩_> 50%	МН		BLUE		NIC SILTS, MICACEOUS OMACEOUS, FINE SANDY YSOILS		TICITY CHART SEE BELOW)
FINE GRAINED SOLLS occretran kr. f by wednet masses 200 steved		W_< 30%	CL		GREEN	PLASTIC	NIC CLAYS OF LOW IT Y, GRAVELLY, SANDY, Y CLAYS, LEAN CLAYS		
AINED	CLANS ABOVE "A" CIVE OF PLASTICITY CHART NEOLOBELE CROAMIC COMENT	30% < W_ <50%	CI		GREEN - BLUE		NIC CLAYS OF MEDIUM ITY, SILTY CLAYS		
NE-GR	ND034	₩_> 50%	СН		BLUE		NIC CLAYS OF HIGH IT Y, FAT CLAYS		
ГЦ ГЦ	ORGANIC SILTS AND CLAYS CLAYS BLOW W'UNE	₩_< 50%	OL		GREEN		C SILTS AND ORGANIC AYS OF LOWPLASTICITY	FINECONTE	THE NAIURE OF THE INT HAS NOT BEEN ID IT IS DESIGNATED BY
5	ORGANI(SILTS AN CLAYS SELOW AND	₩_≻ 50%	OH		BLUE	ORGANI PLASTIC	C CLAYS OF HIGH ITY		"F,EG. SFISAMINIUSE IHSILI ORCLAY
н	GHLYORGA	NICSOILS	Pt		ORANGE	PEAT AN ORGANI	D OTHER HIGHLY C SOILS		COLOR OR ODOR, EN FIBROUS TEXTURE
			L SYMBOL			1	50		
		BEDROCK (MORFERSHIATED)		X	ANIC ASH		2 40 Phstirity Chat for Soils Passing Number 40 Size		СП
	1	SOIL C U.S. STANDARD	OMPONENTS		OF PERCEN	TACE			MH
FR.4	ACTION	SIEVESIZE	BYWE	GHT OF MIN	OF PERCEN	TOR	2 40 Phytriny Chain for Soils Passing Number 40 Size 20 CL 21 10		
GRAND	Louis	76mm 19mm	FERICI		DEDORA	TOK	10 7		
	fina	19mm #4	<u>.</u>	35	and		4 ACL-MLS		
SAND	9111	17.000 #1	35-	20	sme		0 10 20 30 LI	40 50 2011111111111111111111111111111111111	40 70 80 %)
SAMD	oo ana malium. fina	4.3 mm 200 mm 200 mm 425 pm 425 pm 75 pm	200 mm 425 pm 50 - 10 htle 1. ALL SIEVE SIZES MEN HONEDON IE STANDARD, A.S.IM.E11				NEDONTHIS		
SILT(no OR CLAV(p	mplasii:) (hstic)	Ծրա	D-	1	trace		CIFINO GROUPSARE GIV GWGC ISA WELLGRADE CLAYEINTER BETWEEN S	ENCOMBINE DGRAVEL SA	DGROUP SYMBOLS, EG.
		OVERS	IZEMATERI	AL			ATTA		
CO	UNIFICER SUBB BBLES 76 m ULDERS > 21	m to 203 nm	R	or Rounded Ock Fragmen Ocks > 0.76	AIS > 36 mm. cubicmetre		GRE GRE		ITE NORTH

Appendix D MECP Correspondence Ministry of the Environment, Conservation and Parks Client Services and Permissions Branch 1st Floor 135 St Clair Ave W Toronto ON M4V 1P5 Fax: (416) 314-8452 Telephone: (416) 314-5132 Ministère de l'Environnement, de la Protection de la nature et des Parcs Direction des services à la clientèle et des permissions 135 av St Clair O Toronto ON M4V 1P5 Télécopieur : (416) 314-8452 Téléphone : (416) 314-5132

October 10, 2019

Adam Goheen The Corporation of the Township of Leeds and the Thousand Islands 1233 Prince St Lansdowne Post Office Box 280 Leeds and the Thousand Islands, Ontario K0E 1L0

Reference Number 4571-BGJRE2

Dear Sir:

Re: Application for Approval of Waste Disposal Sites Notice to ECA No. A442001 - Revise Terms and Conditions, Add Lands to Reynolds Road Landfill Property Leeds and the Thousand Islands Township, United Counties of Leeds and Grenville

We acknowledge receipt of your application for approval dated September 2, 2019 and received on October 1, 2019 for the following:

Approval Type:Waste Disposal SitesProject Description:This proposal is to amend Environmental Compliance Approval (Waste Disposal
Site) No. A442001 issued to The Corporation of the Township of Leeds and the
Thousand Islands to recognize the additional lands purchased and to remove
conditions 3.0(1) and 3.0(2)Site Location:Reynolds Road Dump (Closed)
Reynolds Road
Lot 18, Concession 2

Leeds and the Thousand Islands Township, United Counties of Leeds and Grenville

The Ministry's reference number for your application is 4571-BGJRE2. Please quote this number in any correspondence or enquiries regarding this application.

Please note that your submission has only been screened with respect to the presence of the supporting documentation normally required for this type of application, and did not include any technical analysis of the documentation, and therefore you may still be requested to provide some additional information during our detailed technical review of the application. In such a case, the Reviewer will contact you and/or your identified Project Technical Information Contact at this time.

Also, please note that a duplicate copy of the application and all supporting information should have been sent to the local District Office of the Ministry. If this has not been done, please do so as soon as possible.

Should you have any questions related to your application, please contact me at the above phone number.

Sincerely,

Ricki Allum

Application Assessment Officer

- c: District Manager, MECP Kingston District
 - Adam Goheen, The Corporation of the Township of Leeds and the Thousand Islands, Email: agoheen@townshipleedsd.on.ca

John Pyke, Malroz Engineering Inc., Email: pyke@malroz.com Albert Paschkowiak, Malroz Engineering Inc., Email: paschkowiak@malroz.com

Appendix E Tables

Table 1Sampling Parameters

М	etals	General Parameters	PHCs an	d PAHs	VOO	Cs			
Mercury	Molybdenum	Alkalinity as CaCO3	Acenaphthene	2,6-Dinitrotoluene*	Acetone	Hexane			
Aluminum	Nickel	Ammonia-N	Acenaphthylene	Fluoranthene	Benzene	Methyl Ethyl Ketone			
Antimony	Potassium	Biochemical Oxygen Demand	Anthracene	Fluorene	Bromodichloromethane	Methyl Isobutyl Ketone			
Arsenic	Selenium	Chemical Oxygen Demand	Benzo[a]anthracene	Indeno[1,2,3-cd]pyrene	Bromoform	Methyl tert-butyl ether			
Barium	Silicon	Dissolved Organic Carbon	Benzo[a]pyrene	1-Methylnaphthalene	Bromomethane	Methylene Chloride			
Beryllium	Silver	Conductivity	Benzo[b]fluoranthene	2-Methylnaphthalene	Carbon Tetrachloride	Styrene			
Boron	Sodium	Hardness as CaCO3	Benzo[g,h,i]perylene*	Methylnaphthalene (1&2)	Chlorobenzene	1,1,1,2-Tetrachloroethane			
Cadmium	Strontium	pH	Benzo[k]fluoranthene	Naphthalene	Chloroform	1,1,2,2-Tetrachloroethane			
Calcium	Thallium	Phenols	Benzo[b+k]fluoranthene*	Pentachlorophenol*	Dibromochloromethane	Tetrachloroethylene			
Chromium	Tin	Total Phosphorus	1,1-Biphenyl	Phenanthrene	Dichlorodifluoromethane	Toluene			
Cobalt	Titanium	Total Dissolved Solids	Bis[2-Chloroethyl]ether*	Phenol*	Ethylene Dibromide (1,2-Dibromoethane)	1,1,1-Trichloroethane			
Copper	Tungsten	Total Suspended Solids	Bis[2-Chloroisopropyl]ether*	Pyrene	1,2-Dichlorobenzene	1,1,2-Trichloroethane			
Iron	Uranium	Total Kjeldahl Nitrogen-N	Bis[2-ethylhexyl] Phthalate*	1,2,4-Trichlorobenzene*	1,3-Dichlorobenzene	Trichloroethylene			
Lead	Vanadium	Chloride	4-Chloroaniline*	2,4,5-Trichlorophenol*	1,4-Dichlorobenzene	Trichlorofluoromethane			
Magnesium	Zinc	Nitrate-N	2-Chlorophenol*	2,4,6-Trichlorophenol*	1,1-Dichloroethane	Vinyl Chloride			
Manganese		Nitrite-N	Chrysene		1,2-Dichloroethane	m/p-Xylene			
		Sulphate	Dibenzo[a,h]anthracene		1,1-Dichloroethylene	o-Xylene			
			3,3'-Dichlorobenzidine*		cis-1,2-Dichloroethylene	Xylenes, total			
			2,4-Dichlorophenol*		trans-1,2-Dichloroethylene				
			Diethyl Phthalate*		1,2-Dichloropropane				
			Dimethyl Phthalate*		cis-1,3-Dichloropropylene				
			2,4-Dimethylphenol*		trans-1,3-Dichloropropylene				
			2,4-Dinitrophenol*		1,3-Dichloropropene, total				
			2,4-Dinitrotoluene*		Ethylbenzene				

Notes: * parameter reported by Caduceon in 2018, but has not historically been reported. Future monitoring programs will not report these parameters.

Table 2Well Inspection Summary

Well Type	UTM Co	rrdinates ²	Well Construction		Well Integ	rity	Well Observations
Protective Casing	Easting	Northing	Material	Locked	Capped	Condition ¹	Remarks
MW1	419160	4915430	steel monument	yes	J-Plug	good	A175197
MW2	419143	4915404	steel monument	yes	J-Plug	good	A175197
Notes:	Well inspection	completed on Ma	ay 2 and November 26, 2019 .				Data Input: AP
1		ranked as good (tenance required	(no maintenance required),				Data Check: MW
	•	naintenance or a					
2	UTM coordinate						

na not applicable

Table 3
Groundwater Monitoring Results

Location	Sample Date	DTW (m)	DTB (m)	Groundwater/ Surface Water Elev. (m)	TOP Elev. (m)	Methane Concentration (%LEL)	Colour	Observations Sediment	Odour
MW-1	19-May-02	2.88	7.65	97.09	99.97	nr	clear	trace	none
10100-1	19-Nov-26	2.92	7.57	97.05	99.97	nr	cloudy	trace	none
MW-2	19-May-02	4.67	11.60	97.61	102.28	nr	clear	none	none
1010 0 -2	19-Nov-26	4.72	11.60	97.56	102.28	nr	clear	none	none
Culvert Inflow	19-May-02	0.65	-	95.75	96.40	-	-	-	-
	19-Nov-26	[1]	-	-	96.40	-	-	-	-

Notes:

LEL denotes lower explosive limit

nr indicates no response

DTW depth to water

- denotes "not analyzed"

[1] not collected

Data Input: AP

Data Check: MW

Table 4 - Groundwater Chemistry - General Chemistry and Metals

Location	Paran	neter	Alkalinity as CaCO3	Ammonia-N	Chemical Oxygen Demand	Dissolved Organic Carbon	Conductivity	Hardness	Hd	Phenolics	Phosphorus, total	Total Dissorved Solids Total Suspended Solids	Total Kjeldahl Nitrogen	Chloride	Nitrate as N	Nitrite as N	Sulphate	Aluminum	Antimony	Arsenic	Beryllium	Boron	Cadmium	Calcium	Chromium Cobalt	Copper	Iron	Lead	Magnesium Manganese	Molybdenum	Nickel	Potassium Silicon	Selenium	Silver	Sodium	Strontium	Tin	Titanium	Tungsten	Uranium .	Zinc	pH (field)	Temperature (field)	Dissolved Oxygen (field)	Conductivity (field)	Unionized Ammonia (Field)
	Units		mg/L	mg/L	mg/L	mg/L	µmho/cm	mg/L	pH units	mg/L	mg/L m	g/L mg	'L mg/	L mg/L	. mg/L	mg/L r	ng/L ug	/L ug/L	ug/L	ug/L u	g/L ug/L	ug/L	ug/L	ug/L	ug/L ug	/L ug/L	ug/L	ug/L	ug/L ug/L	. ug/L	ug/L ug	g/L ug/	L ug/L	ug/L	ug/L	ug/L ug	g/L ug/	L ug/L	ug/L u	ıg/L u	g/L ug/L	. pH uni	its °C	: mg/L	. mS/cm	mg/L
	RL (2019)		5	0.01	5	0.2	1	1	-	0.001	0.01	3 3	0.1	0.5	0.05	0.05	1 0.0	02 10	-	0.1	1 -	5	0.015	20	1 0.	1 0.1	5	0.02	20 1	-	- 10	- 00	-	0.1	200	1		-	- 0	0.05	5 5	-	-	-	-	0.001
	ODWS	Sample ID	30-500 OG			5 AO		80-100 OG	6.5-8.5 OG			00 .O		250 AO	10 CS	1 CS	500 1 AO C	s 100 OG	6 CS	10 10 CS 0	00 S	5000 CS	5 CS		50 CS	1000 AO	300 AO	10 CS	50 AO				50 CS	2	00000 AO				(20 CS	5000 AO					
MW1	19-May-02	19-W002	132	0.04	<	4.5	362	126	8.18	< 0.002	0.05 1	86 5	0.1	26.0	<	<	4 <	20	-	0.7 5	i1 -	54	< 2	27500	1 <	1.4	<	0.13 1	3900 2	-	- 14	- 00	-	< 2	27000	448		-	- 0	.62	< <	8.06	7.4	5 0.00	0.371	<0.001
MW1	19-Nov-26	19-W003	126	0.05	<	2.3	340	119	8.05	<	0.05 1	75 5	0.2	31.3	0.12	<	2 <	20	-	0.9 5	i6 -	58	< 2	25600	< <	2.0	36	0.07 1	3500 11	-	- 15	- 00	-	< 2	27400	431		-	- 0	.35	< 5	5.23	10.0	6.49	0.346	<0.001
MW2	19-May-02	19-W001	123	0.05	10	4.3	351	143	8.13	< 0.002	0.23 1	81 10	0.1	17.9	<	<	18 <	30	-	1.2 4	.9 -	49	0.018	32600	1 <	2.5	<	0.24 1	5000 1	-	- 13	- 00	-	< 1	17300	831		-	- 0	0.69	< <	7.74	8.6	2 2.59	0.387	<0.001
MW2	19-Nov-26	19-W004	125	0.04	<	1.8	348	145	8.04	0.004	0.1 1	79 15	0.1	22.1	0.11	<	20 <	20	-	1.2 5	- 6	52	< ;	33400	< <	3.6	<	0.08 1	5000 1	-	- 14	- 00	-	< 1	16700	830		-	- 0	.55	< <	8.04	10.0	2.40	0.361	<0.001

Notes: "---" denotes not analyzed "<" denotes results below reporting limit

"<#" denotes elevated reporting limit

"MW###" denotes groundwater monitoring well

"RL" denotes reporting limit

AO indicates aesthetic objective OG indicates operational guidelines CS Chemical standards AO indicates aesthetic objective OG indicates operational guidelines CS Chemical standards Malroz was not able to independently validate historic chemistry and exceedances, provided by the Township of Leeds and the Thousand Islands

Input: MW Checked: JMP

Table 5 - Groundwater Chemistry PHC and PAH Analysis

	Parameter		F1 PHCs (C6-C10)	F2 PHCs (C10-C16)	F3 PHCs (C16-C34)	F4 PHCs (C34-C50)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[b+k]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	1,1-Biphenyl	Chrysene	Dibenzo[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd]pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Methylnaphthalene (1&2)	Naphthalene	Phenanthrene	Pyrene
Location	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	RL (2019)		50	50	400	400	0.05	0.05	0.05	0.05	0.01	0.05	0.1	0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.08	1	0.05	0.05	0.05
	O.Reg 153/04 Table 8		420	150	500	500	4.1	1	1	1	0.01	0.1		0.2	0.1	0.5	0.1	0.2	0.41	120	0.2	3.2	3.2	3.2	11	1	4.1
	ODWS	Sample ID	-	-	-	-	-	-	-	-	0.01 CS	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW1	19-May-02	19-W002	<	<	<	<	۷	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	۷	<	<	<	<
MW1	19-Nov-26	19-W003	<	<	<	<	۷	<	<	<	<	<	<	<	<	<	<	۷	<	<	۷	۷	۷	<	<	<	<
MW2	19-May-02	19-W001	<	<	<	<	۷	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	۷	<	<	<	<
MW2	19-Nov-26	19-W004	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<

Notes:

"---" denotes not analyzed

"<" denotes results below reporting limit

"<#" denotes elevated reporting limit

"MW###" denotes groundwater monitoring well

"RL" denotes reporting limit

denotes concentration exceeds the Ontario Drinking Water Standards

AO indicates aesthetic objective OG indicates operational guidelines CS Chemical standards

shading indicates exceedance of Ontario Regulation 153/04 MECP 2011 Table 8 Standards

Malroz was not able to independently validate historic chemistry and exceedances, provided by the Township of Leeds and the Thousand Islands

Input: MW Checked: JMP

Table 6 - Groundwater Chemistry VOC Analysis

Location	Parameter Units RL (2019) ODWS	Sample ID	30		2		0.5	0.2		-		2	2	0.2		0.5	7.4-Dichlorobenzene	0.5	0.5	1,1-Dichloroethylene	0.5	0.5	-	0.5 0.	.5 0.5	0.5	0.5	5	20	- 2	/L Ugu / Lugar	Methylene Chloride	0.5	0.5	0.5	0.5	ug/L 0.5	0.5	0.5	ug/L 5 CS	5	GG 1,3,5-Trimethylbenzene	0.2	1 0.	e	.1
							_			-		-			200 00								-		· -		140 CS		-				5 -	-			00 00		-							,0
MW1	19-May-02	19-W002	< 30	<	<	<	<	<	<	-	< .	<	-	<	<	<		<	<	<	<	<	-		< <	<	<	<	<	- <		-	<	<	<	<	<	<	<	<	<			< <		
MW1	19-Nov-26	19-W003	< 30		<	<	<	<	<	-	< .	<	<	<	<	<	<	<	<	<	<	<	-	< <	< <	<	<	<	<	- <	<	<	<	<	<	<	<	<	<	<	<	-	<	< <	< <	·
MW2	19-May-02	19-W001	< 30	<	<	<	<	<	<	-	< .	<	<	<	<	<	<	<	<	<	<	<	-	< <	< <	<	<	<	<	- <	: <	<	<	<	<	<	<	<	<	<	<	-	<	< <	< <	_
MW2	19-Nov-26	19-W004	< 30	<	<	<	<	<	<	-	< .	<	<	<	<	<	<	<	<	<	<	<	-	< <	< <	<	<	<	<	- <	<	<	<	<	<	<	<	<	<	<	<	-	<	< <	: <	

Notes: "---" denotes not analyzed "<" denotes results below reporting limit "MW###" denotes groundwater monitoring well "RL" denotes reporting limit denotes concentration exceeds the Ontario Drinking Water Standards AO indicates aesthetic objective OG indicates operational guidelines CS Chemical standards Marken was not able to independently validate historic chemistry and exceedances, provide

Malroz was not able to independently validate historic chemistry and exceedances, provided by the Township of Leeds and the Thousand Islands

Data input: MW Data check: JMP

Appendix F Historical Groundwater Analyses and Trends

Historical Groundwater Chemistry - General Chemistry and Metals

Location	Parameter	Alkalinity as CaCO3	Ammonia-N	Chemical Oxygen Demand	Dissolved Organic Carbon Conductivity	Hardness	Н	Phenolics	Phosphorus, total	Total Dissolved Solids	Total Suspended Solids	Total Kjekdahi Nitrogen	Chloride	Nitrate as N	Nitrite as N Sulphate	Mercury	Auminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium Manganese	Molybdenum	Nickel	Potas sium	Silicon	Selenium Silver	Sodium	Strontium	Thallum	Tin	Titanium Tungsten	Uranium	Vanadium	Zinc	(field)	Temperature (field)	Dissofted Oxygen (field)	Unionized Ammonia (Field)
	Units	mg/L	mg/L	mg/L n	ng/L µmho	/cm mg/L	pH units	s mg/L	mg/L	mg/L	mg/L	mg/L	mg/L n	ng/L m	ng/L mg/	L ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L u	ug/L	ug/L ug/l	ug/L	ug/L	ug/L	ug/L	ug/L ug/L	ug/L	ug/L	ug/L	ug/L	ug/L ug/l	. ug/L	ug/L	ug/L	pH units	°C m	ng/L mS	/cm mg/L
	RL (2019)	5	0.01	5	0.2 1	1	-	0.001	0.01	3	3	0.1	0.5 0	.05 0	.05 1	0.02	10	-	0.1	1	-	5	0.015	20	1	0.1	0.1	5 0	0.02	20 1	-	-	100	-	- 0.1	200	1	-	-		0.05	5	5	-	• 7	. 17	0.001
	ODWS	30-500 OG			5 AO	80-10 OG	0 6.5-8.5 OG	;		500 AO				10 CS (1 500 CS AC		100 OG		10 CS	1000 CS		5000 CS	5 CS		50 CS				10 CS	50 AO					50 CS	200000 AO					20 CS		5000 AO				
Field Blank	17-Nov-20	<5	<0.01	<10	0.5 <		6.10	< 0.001	<0.01	20	2	<0.1	<1 <		0.05 <1			_	_	<1	<0.5	<10	<0.1	<100	<1	<0.5	<0.5	<100 <	<0.1	<200 <5	<0.5	<1	<100	<10	<1 <0.1	<200	<10	<0.1	<5	<5 <10	<0.1	<0.5	<5	-	. 7	. 17	
MW1	16-May-19	160	0.46	2940	5.4 84	7 202	7.6	0.012	61.9	566	26000	53.9	150 <	0.1 <	0.05 41	<0.1	49	-	<1	106	-	47	<0.1	54800	4	0.6	2.6	<100	1.1 1	5900 612	-	-	3680	-	- <0.1	100000	443	-	-		1.4	7.2	28	-	-	-	
MW1	16-Jun-26	146	0.03	42	3.2 63	8 182	7.7	< 0.001	0.14	342	282	0.4	97 <	0.1 <	0.05 33	<0.1	1	-	<1	68	-	51	<0.1	43600	<1	<0.5	1.9	<100	0.3 1	7800 128	- 1	-	2190	-	- <0.1	47700	558	-	-		3.1	<0.5	9	-	-	-	-
MW1	16-Nov-16	154	0.06	<10	2.4 50	2 162	7.8	< 0.001	<0.01	274	3	<0.1	63 <	0.1 <	0.05 22	<0.1	3	-	1	66	-	60	<0.1	35900	<1	<0.5	<0.5	<100 <	<0.1 1	7500 <5	-	-	1940	-	- <0.1	33000	556	-	-		1.7	<0.5	<5	-	-	-	-
MW1	17-Aug-03	179	0.43	207	9.5 44	8 171	7.8	0.002	7.56	360	9330	6	41 <	0.1 <	0.05 9	<0.1	16	< 0.5	2	104	<0.5	49	<0.1	38700	<1	<0.5	<0.5	655 <	<0.1 1	8000 198	6.9	<1	2220	5070	<1 <0.1	35200	508	<0.1	<5	<5 <10	0.7	0.6	<5	-	-	-	
MW1	17-Aug-03	180	0.49	155	7.6 45	7 172	7.9	0.003	3.98	342	10400	3.5	41 <	0.1 <	0.05 11	<0.1	3	<0.5	1	103	<0.5	48	<0.1	38900	<1	<0.5	<0.5	384 <	<0.1 1	8100 176	8.6	<1	2150	5130	<1 <0.1	35800	499	<0.1	<5	<5 <10	0.2	<0.5	<5	-	-	-	-
MW1	17-Nov-20	161	0.06	3640	5.8 38	3 164	7.7	< 0.004	53.4	272	146000	59.4	27 <	0.1 <	0.05 5	<0.1	525	<0.5	1	59	<0.5	54	<0.1	37300	<1	<0.5	2.1	542	1.6 1	7300 58	9.5	1	1450	6750	<1 <0.1	23300	788	<0.1	<5	12 <10	2.6	0.9	<5	-	-	-	-
MW1	18-May-30	150	0.03	6	2.9 40	3 163	8.22	< 0.001	0.06	208	20	0.2	32.2 0	.06 <	0.05 14	< 0.0	2 50	-	0.8	82	-	64	< 0.015	36000	< 1	< 0.1	1.4	46 C	0.17 1	7700 19	-	-	1900	-	- < 0.1	32400	551	-	-		1.35	< 5	< 5	-	-	-	
MW1	18-Nov-29	141	0.14	6	2.7 37	7 131	8.00	< 0.002	0.05	194	20	0.2	30.1 <	0.05 <	0.05 7	< 0.0	2 20	-	0.8	59	-	58	< 0.015	28800	< 1	< 0.1	0.5	10 0	0.04 1	4300 10	-	-	1600	-	- < 0.1	30400	453	-	-		0.78	< 5	< 5	-	-	-	-
MW1	19-May-02	132	0.04	< 5	4.5 36	2 126	8.18	< 0.002	0.05	186	5	0.1	26.0 <	0.05 <	0.05 4	< 0.0	2 20	-	0.7	51	-	54	< 0.015	27500	1	< 0.1	1.4	< 5 0	0.13 1	3900 2	-	-	1400	-	- < 0.1	27000	448	-	-		0.62	< 5	< 5	8.06	7.45 0	J.00 0.:	s71 <0.001
MW1	19-Nov-26	126	0.05	< 5	2.3 34	0 119	8.05	< 0.001	0.05	175	5	0.2	31.3 0	.12 <	0.05 2	< 0.0	2 20	-	0.9	56	-	58	< 0.015	25600	< 1	< 0.1	2.0	36 0	0.07 1	3500 11	-	-	1500	-	- < 0.1	27400	431	-	-		0.35	< 5	5	5.23	10.06 6.	6.49 0.3	846 <0.001
MW2	16-May-19	189	0.05	<10	2.7 53	6 174	7.8	0.001	0.12	352	720	0.2	31 <	0.1 <	0.05 45	<0.1	3	-	<1	103	-	50	<0.1	39900	5	<0.5	1.4	<100 <	<0.1 1	8100 69	-	-	1900	-	- <0.1	100000	677	-	-		3.8	11.1	<5	-	-	-	-
MW2	16-Jun-26	190	0.03	37	1.3 52	2 180	7.6	0.002	0.02	292	30	0.2	26 <	0.1 <	0.05 40	<0.1	<1	-	<1	88	-	59	<0.1	43200	<1	<0.5	0.9	<100 <	<0.1 1	7500 42	-	-	1740	-	- <0.1	32700	850	-	-		3.3	<0.5	5	-	-		-
MW2	16-Nov-16	177		11	1.7 43	2 141	7.8	<0.001	0.04	258	4	<0.1	20 <	0.1 <	0.05 31	<0.1	3	-	2	76	-	58	<0.1	31200	<1	<0.5	<0.5	<100 <	<0.1 1	5400 6	-	-	1530	-	- <0.1	26600	819	-	-		2.5	<0.5	<5	-	· ·	-	-
MW2	17-Aug-03	158		32	2.5 37	4 162	8.00	<0.001	0.84	262	4160	0.4	17 <	0.1 <	0.05 21	<0.1	16	<0.5	1	53	<0.5	47	<0.1	37000	<1	<0.5	<0.5	<100 <	<0.1 1	6800 31	9.9	<1	1100	6740	<1 <0.1	22500	751	<0.1	<5	<5 <10	1.6	<0.5	<5	-	-	-	-
MW2	17-Nov-20	161		29	1.1 39	2 155	8.00	<0.001	0.15	246	780	0.2	21	0.1 <	0.05 28	<0.1	2	<0.5	1	40	<0.5	53	<0.1	34900	<1	<0.5	<0.5	<100 <	<0.1 1	6500 12	10.5	<1	1320	5980	<1 <0.1	22900	741	<0.1	<5	<5 <10	1.4	<0.5	<5	-	-	-	-
MW2	18-May-30	135		6	2.9 40	3 154	8.24	< 0.001	0.03	184	4	0.1	19.6 0	.07 <	0.05 22	< 0.0	2 30	-	1.1	60	-	54	< 0.015	34200	< 1	< 0.1		< 5 0	-		-	-	1600	-		19700		-	-		0.93	< 5	< 5	-	· ·		-
MW2	18-Nov-29	133		6	2.7 37	7 143	8.02	< 0.002	0.06	180	< 3	0.1	18.2 <	0.05 <	0.05 20	< 0.0	2 20	-	1.1	55	-	54	< 0.015	32600	< 1	< 0.1		< 5 <			-	-	1400	-	- < 0.1	18700	833	-	-		0.8	< 5	< 5	-			
MW2	19-May-02	123		10	4.3 35		8.13		0.23	181	10	0.1	17.9 <	0.05 <	0.05 18	< 0.0	2 30	-	1.2	49	-	49	0.018	32600	1	< 0.1		< 5 0		5000 1	-	-	1300	-	- < 0.1	17300	831	-	-		0.69	< 5	< 5				387 <0.001
MW2	19-Nov-26	125	0.04	< 5	1.8 34	8 145	8.04	0.004	0.1	179	15	0.1	22.1 0	.11 <	0.05 20	< 0.0	2 20	-	1.2	56	-	52	< 0.015	33400	< 1	< 0.1	3.6	< 5 0	0.08 1	5000 1	-	-	1400	-	- < 0.1	16700	830	-	-		0.55	< 5	< 5	8.04	10.04 2.	40 0.3	861 <0.001

 Notes:

 --- denotes not analyzei

 --## denotes results below reporting lim

 MW### denotes groundwater monitoring wel

 RL denotes reporting lim

 All denotes reporting lim

 L denotes reporting lim

 All denotes reporting lim

 All* denotes reporting lim

 All* denotes reporting lim

 All* denotes concentration exceeds the Ontario Drinking Water Standart

 All indicates esthetic objection

 All indicates esthetic objection

 Mairoz was not able to independentity validate historic chemistry and exceedances, provided by the Township of Leeds and the Thousand Islands

Input: MW Checked: JMP

	Parameter	F1 PHCs (C6-C10)	F2 PHCs (C10-C16)	F3 PHCs (C16-C34)	F4 PHCs (C34-C50)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzolajpyrene	Benzolbjfluoranthene	Benzo[b+k]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	1,1-Biphenyl	Chrysene	Dibenzo[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd]pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Methylnaphthalene (182)	Naphthalene	Phenanthrene	Pyrene
Location	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	RL (2019)	50	50	400	400	0.05	0.05	0.05	0.05	0.01	0.05	0.1	0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.08	0.08	0.05	0.05	0.05
	O.Reg 153/04 Table 8	420	150	500	500	4.1	1	1	1	0.01	0.1		0.2	0.1	0.5	0.1	0.2	0.41	120	0.2	3.2	3.2	3.2	11	1	4.1
	ODWS	-	-	-	-	-	-	-	-	0.01 CS	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Field Blank	17-Nov-20	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.01
MW1	16-May-19	< 25	219	695	322	1.18	0.91	2.83	3.33	3.2	3.61	-	1.89	2.16	0.55	3.19	0.53	11.2	1.65	1.78	1.04	2.04	3.08	1.92	11.1	8.75
MW1	16-Jun-26	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.01
MW1	16-Nov-16	< 25	< 100	< 100	<100	0.05	<0.05	0.06	0.05	0.07	0.06	-	0.1	0.05	<0.05	0.07	0.09	0.07	0.06	0.09	0.1	0.08	0.18	<0.05	0.06	0.07
MW1	17-Aug-03	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.01
MW1	17-Aug-03	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.01
MW1	17-Nov-20	< 25	200	600	300	1.93	1.13	6.41	8.44	8.14	8.24	-	4.42	5.01	0.28	8.64	1.26	23.3	3.2	4.13	0.53	0.7	1.23	0.81	21.6	18.4
MW1	18-May-30	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	-	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05	< 0.05
MW1	18-Nov-29	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.1	<0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.12	< 0.05	< 0.05
MW1	19-May-02	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	<0.1	< 0.05	< 0.05	< 0.2	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.08	< 1	< 0.05	< 0.05	< 0.05
MW1	19-Nov-26	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.1	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.08	< 1	< 0.05	< 0.05	< 0.05
MW2	16-May-19	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	0.19	<0.05	<0.05	0.08	0.11	0.2	0.1	0.15	0.25
MW2	16-Jun-26	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.01
MW2	16-Nov-16	< 25	< 100	< 100	<100	<0.05	<0.05	0.05	0.04	0.06	0.05	-	0.08	0.06	<0.05	0.05	0.07	0.06	0.05	0.07	0.09	0.09	0.18	<0.05	0.05	0.06
MW2	17-Aug-03	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.01
MW2	17-Nov-20	< 25	< 100	< 100	<100	<0.05	<0.05	<0.01	<0.01	<0.01	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.05	<0.01
MW2	18-May-30	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	-	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05	< 0.05
MW2	18-Nov-29	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.1	<0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05	< 0.05
MW2	19-May-02	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	<0.1	< 0.05	< 0.05	< 0.2	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.08	< 1	< 0.05	< 0.05	< 0.05
MW2	19-Nov-26	< 50	< 50	< 400	< 400	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	<0.1	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.08	< 1	< 0.05	< 0.05	< 0.05

Historical Groundwater Chemistry - PHC and PAH Analysis

Notes: "---" denotes not analyzed "<##" denotes results below reporting limit "MW###" denotes groundwater monitoring well

"RL" denotes reporting limit

denotes concentration exceeds the Ontario Drinking Water Standards

AO indicates aesthetic objective OG indicates operational guidelines CS Chemical standards

shading indicates exceedance of Ontario Regulation 153/04 MECP 2011 Table 8 Standards Malroz was not able to independently validate historic chemistry and exceedances, provided by the Township of Leeds and the Thousand Islands

Input: MW Checked: JMP

Historical Groundwater Chemistry - VOC Analysis

Location	Parameter	Acebre	Benzene	Bromo dichlorom etha ne	Bromo form Bromo methane	Carbon Tetrachioride	Ch bro benze ne	Ch b ro efran e	Chbraterm	Ch b to methane	Dibromoch b to methane	Dichlorodiflu oromethane	Ethylene dibromide (dibromoethane, 1,2-)	1.2-Dich lorobenze ne	1,3-Dichlorobenze ne	1, 4-Dich lorobenze ne	1, 1-Dichlorcethaine	1,2-Dichloroetha ne	1,1-Dichlorcethylene	da-1.2.Dichlorce fly/lene	tans-1,2-Dichloroeftylene	1, 2-Dich lor ceftry lene, total	1, 2-Dich loropropane cas-1,3-Dichlorop no pviene	ta ns-1,3-Dichloropropylen e	1,3-Dichloropropene, total	Ethylben zene	He xane	Methyl Ethyl Ketone (2-Bulanone)	Methyl Isobułyl Ketone	Methyl tert-butyl ether	Methylene Chloride	Styrene	1,1,1,2.Te trachioroethane	1,12.2-Te trachloroethane	Te trachloroeth ylene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluo io methane	1,3,5-Trimethylben zene	Vinyl Chbride	m(p-X)/ene	o-Xyllenee Xyllenees, total
	Units	ug/L	ug/L	ug/L	ug/L ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L u	g/L ug/	L ug/L	ug/L	ug/L	ug/L	ug/L ug	/L ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L ug/L
	RL (2019)) 30	0.5	2	5 0.5	0.2	0.5	-	1	-	2	2	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	- 0	0.5 0.5	5 0.5	0.5	0.5	5	20	20	2	5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5	-	0.2	1	0.5 1.1
	ODWS	-	1 CS	-		2 CS	80 CS	-	-	-	-	-	- 2	200 CS	-	5 CS	-	5 CS	14 CS	-	-	-		-	-	140 CS	-		-	-	50 CS	-	-	-	10 CS	60 CS	-	-	5 CS	-	-	1 CS	-	- 90 CS
Field Blank	17-Nov-20	0 <5.0	<0.5		<0.5 <0.5		<0.5	<1.0	<0.5	<3.0	<0.5				<0.5	<0.5		<0.5	<0.5			-0.0	0.5 <0.	5 <0.5	<0.5	<0.5	<1.0	<5.0 <1		<2.0	< 5	<0.5			.0.0	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5		<0.5 <0.5
MW1	16-Jun-23		.0.0	-0.0	<0.5 <0.5		<0.5	<1.0	<0.5	.0.0			10.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.0	<0.5 <	0.5 <0.	-0.0	<0.5	<0.5		<5.0 <1		<2.0	< 5	<0.5	10.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5		<0.5 <0.5
MW1	16-Nov-16		<0.5		<0.5 <0.5		<0.5	<1.0	<0.5	<3.0				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.0		0.5 <0.		<0.5	<0.5			0.0 <5.0	<2.0	< 5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5		<0.5 <0.5
MW1	17-Aug-03	3 <5.0			<0.5 <0.5	<0.2	<0.5	<10	<0.5	<3.0	<0.5	<1.0	< 0.2	<0.5	<0.5	<0.5						<0.5 <		5 <0.5	<0.5		<10	<5.0 <1	10 <50	<2.0	< 5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	< 0.5	<0.5		<0.5 <0.5
MW1			<0.5													~0.J	<0.5	<0.5	<0.5	<0.5			0.5 <0.			<0.5																		
	17-Aug-03			<0.5	<0.5 <0.5	<0.2	<0.5	<1.0	<0.5	<3.0			-0.2	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<1.0	<5.0 <1).0 <5.0	<2.0	< 5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	-0.0	<0.5 <0.5
MW1	17-Nov-20	3 <5.0 0 <5.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5 <0.5 <0.5	<0.2 <0.2	<0.5 <0.5		<0.5 <0.5	<3.0	<0.5	<1.0	<0.2	<0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5 <0.5	<0.5 <0.5		<0.5	<0.5 < <0.5 <	0.5 <0. 0.5 <0.	5 <0.5 5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<5.0 <1 <5.0 <1).0 <5.0		< 5 < 5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<1.0 <1.0	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5
MW1	17-Nov-20 18-May-30	3 <5.0 0 <5.0 0 < 30	<0.5 <0.5	<0.5	<0.5 <0.5	<0.2 <0.2 < 0.2	<0.5 <0.5 < 0.5	<1.0	<0.5	<3.0	<0.5 < 2			-0.0	<0.5 <0.5 < 0.5	<0.5 <0.5 <0.5 <0.5	<0.5	<0.5 <0.5 <0.5 < 0.5	<0.5 <0.5 <0.5 < 0.5		<0.5	<0.5 < <0.5 < - <	0.5 <0. 0.5 <0. 0.5 <0	5 <0.5	<0.5	<0.5	<1.0 <1.0 < 5	<5.0 <1 <5.0 <1 <20).0 <5.0		< 5 < 5 < 5 < 5	.0.0	<0.5 <0.5 < 0.5	<0.5 <0.5 < 0.5	.0.0	<0.5 <0.5 < 0.5	<0.5 <0.5 < 0.5		-0.0	-1.0		<0.5 < 0.5	<0.5 < 1.0	<0.5 <0.5 < 0.5 < 1.1
MW1 MW1	17-Nov-20 18-May-30 18-Nov-29	3 <5.0 0 <5.0 0 < 30 9 < 30	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5 <0.5 <0.5	<0.2 <0.2 < 0.2 < 0.2 < 0.2	<0.5 <0.5 < 0.5 < 0.5 < 0.5	<1.0	<0.5 <0.5	<3.0	<0.5 < 2 < 2	<1.0	<0.2	<0.5	<0.5 <0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5		<0.5	<0.5 < <0.5 < - < - <	0.5 <0. 0.5 <0. 0.5 <0 0.5 <0 0.5 <0	5 <0.5 5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0 <5 <5	<5.0 <1 <5.0 <1 <20 <20).0 <5.0		< 5 < 5 < 5 < 5 < 5 < 5	.0.0	<0.5 <0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5	.0.0	<0.5 <0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5		-0.0	-1.0		<0.5 < 0.5 < 0.5	<0.5 < 1.0 < 1.0	<0.5
MW1 MW1 MW1	17-Nov-20 18-May-30 18-Nov-29 19-May-02	3 <5.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5 <0.5 <0.5 < 5 < 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1.0	<0.5 <0.5 <1 <1 <1 <1	<3.0	<0.5 < 2 < 2 < 2 < 2	<1.0	<0.2	<0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5		<0.5	<0.5 < <0.5 < - < - < - <	0.5 <0. 0.5 <0. 0.5 < 0 0.5 < 0 0.5 < 0 0.5 < 0	5 <0.5 5 <0.5	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1.0 <1.0 <5 <5 <5 <5	<5.0 <1 <5.0 <1 <20 < <20 < <20 <).0 <5.0		< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	.0.0	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5	.0.0	<0.5 <0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5		-0.0	-1.0		<0.5 < 0.5 < 0.5 < 0.5 < 0.2	<0.5 < 1.0 < 1.0 < 1.0	<0.5
MW1 MW1 MW1 MW1	17-Nov-20 18-May-30 18-Nov-29 19-May-02 19-Nov-26	3 <5.0	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5	<0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 < 0.5 < 0.5 <0.5 <0.5 <0.5 < 0.5	<1.0 <1.0 -	<0.5 <0.5 <1 <1 <1 <1 <1 <1 <1	<3.0	<0.5 <2 <2 <2 <2 <2 <2 <2	<1.0 <2 <2 <2 <2 <2 <2	<0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5		<0.5	<0.5 < <0.5 < - < - < - < - <	0.5 <0. 0.5 <0. 0.5 <0 0.5 <0 0.5 <0 0.5 <0 0.5 <0 0.5 <0	5 <0.5	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1.0 <1.0 <5 <5 <5 <5 <5 <5	<pre><5.0 <1 <5.0 <1 <5.0 <1 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0</pre>	0.0 <5.0 0.0 <5.0 < 20 < 20 < 20 < 20 < 20 < 20		< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	.0.0	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	.0.0	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		-0.0	<1.0 < 5 < 5 < 5 < 5 < 5	<0.5 - - -	<0.5 < 0.5 < 0.5 < 0.2 < 0.2	<0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	<0.5
MW1 MW1 MW1 MW1 MW2	17-Nov-20 18-May-30 18-Nov-29 19-May-02 19-Nov-26 16-Jun-23	3 <5.0	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<0.5 <0.5 <0.5	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1.0 <1.0 	<0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <0.5	<3.0 - - - - - - - - - - - - - - - -	<0.5 <2 <2 <2 <2 <2 <2 <2 <2 <0.5	<1.0 <2 <2 <2 <2 <2 <2 <1.0	<0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	 <0.5 < <0.5 	0.5 <0.	5 <0.5	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 <5 <5 <5 <5 <5 <1.0	<pre><5.0 <1 <5.0 <1 <5.0 <1 <2.0 <2.0 <2.0 <2.0 <2.0 <5.0 <1 </pre>	0.0 <5.0	<pre><2.0 <2.0 <2.0 <2.0 <2.2 <2 <2 <2 <2 <2 <2.0 <2.0</pre>	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1.0 < 5 < 5 < 5 < 5 < 5 < 1.0	<0.5 - - - - <0.5	<0.5 < 0.5 < 0.5 < 0.2 < 0.2 < 0.2 < 0.5	<0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.5	<0.5
MW1 MW1 MW1 MW1 MW2 MW2	17-Nov-20 18-May-30 18-Nov-29 19-May-02 19-Nov-26 16-Jun-23 16-Nov-16	3 <5.0 0 <5.0 0 <30 9 <30 2 <30 6 <30 3 <5.0 6 <5.0 6 <5.0	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <2 <2 <2 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5	<0.5	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 - - - - - - - - - - - - - - - - - - -	<0.5 <0.5 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5	<3.0 - - - <3.0 <3.0 <3.0	<0.5 <2 <2 <2 <2 <2 <2 <2 <0.5 <0.5	<1.0 <2 <2 <2 <2 <2 <2 <1.0 <1.0	<0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<0.5 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 < <0.5 < <	0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0. 0.5 <0.	5 <0.5 5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5 .5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 <5 <5 <5 <5 <5 <5 <1.0 <1.0	<5.0 <1 <5.0 <1 <20 <20 <20 <20 <20 <20 <20 <5.0 <1 <5.0 <1 <5.0 <1	0.0 <5.0 0.0 <5.0 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 5.0	<pre><2.0 <2.0 <2.0 <2.0 <2.2 <2 <2 <2 <2 <2 <2.0 <2.0</pre>	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 < 5 < 5 < 5 < 5 < 5 < 1.0 < 1.0	<0.5 - - - - - - - - - - - - - - - - - - -	<0.5 < 0.5 < 0.5 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 < 0.5	<0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <1.1 <0.5 <1.1 <0.5 <1.1 <0.5 <1.1 <0.5 <1.1 <0.5 <1.1 <0.5 <1.1 <0.5 <1.1 <0.5 <1.1 <0.5 <1.5 <0.5 <0.5
MW1 MW1 MW1 MW1 MW2 MW2 MW2	17-Nov-20 18-May-30 18-Nov-29 19-May-02 19-Nov-26 16-Jun-23 16-Nov-16 17-Aug-03	3 <5.0	<pre></pre> <0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5	<0.5 <0.5 <2 <2 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5	<0.5	 <0.2 	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 - - - - - - - - - - - - - - - - - - -	<0.5 <0.5 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5	< <3.0 - - - - - - - - - - - - - - - - - - -	<0.5 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<1.0 <2 <2 <2 <2 <1.0 <1.0 <1.0 <1.0	<0.2 < 0.2 < 0.2	<0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 	<pre><</pre> <0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5 <p< td=""><td><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</td><td><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</td><td> <0.5 < <0.5 < </td><td>0.5 <0.</td> 0.5 <0.</p<>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 < <0.5 < 	0.5 <0.	5 <0.5	<0.5 <0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0 <1.0	<5.0	0.0 <5.0	<pre></pre> <2.0<2.0<2<2<2<2<2<2.0<2.0<2.0<2.0	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	 <0.5 	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 < 0.5 < 0.5	<0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0	<0.5 - - - - - - - - - - - - - - - - - - -	<0.5 < 0.5 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.5 < 0.5 < 0.5	$\begin{array}{c ccccc} \sim 0.5 & < 0.5 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 0.5 \\ < 0.5 & < 0.5 \\ < 0.5 & < 0.5 \\ < 0.5 & < 0.5 \\ \end{array}$
MW1 MW1 MW1 MW1 MW2 MW2 MW2 MW2	17-Nov-20 18-May-30 18-Nov-29 19-May-02 19-Nov-26 16-Jun-23 16-Nov-16 17-Aug-03 17-Nov-20	3 <5.0	<0.5	<pre><0.5 <0.5 <2 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5	<pre></pre> <0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 - - - - - - - - - - - - - - - - - - -	<0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5	< <3.0 - - - - - - - - - - - - - - - - - - -	<0.5 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <2 <2 <2 <2 <1.0 <1.0 <1.0 <1.0 <1.0	 <0.2 	<0.5 < 0.5 < 0.5	<0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	 <0.5 	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 < <0.5 < 	0.5 <0.	5 <0.5	<0.5 <0.5 < 0.5 <	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0 <1.0 <1.0	<5.0	0.0 <5.0	<pre><2.0 <2.0 <2.0 <2.0 <2.2 <2 <2 <2 <2 <2 <2.0 <2.0</pre>	<pre> </pre> <pre> <pre> </pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre>	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5		<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0 <1.0	<0.5 - - - - - - - - - - - - - - - - - - -	<0.5 < 0.5 < 0.5 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MW1 MW1 MW1 MW1 MW2 MW2 MW2 MW2 MW2 MW2	17-Nov-20 18-May-30 18-Nov-29 19-May-02 19-Nov-26 16-Jun-23 16-Nov-16 17-Aug-03	3 <5.0	<pre></pre> <0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5	<pre><0.5 <0.5 <2 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<0.5	<pre></pre> <0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2	 <0.5 	<1.0 <1.0 - - - - - - - - - - - - - - - - - - -	<pre><0.5 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <1 </pre>	< <3.0 - - - - - - - - - - - - - - - - - - -	<0.5 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5 <0.5 <2	<1.0 <2 <2 <2 <2 <1.0 <1.0 <1.0 <1.0 <1.0	 <0.2 	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	-0.0	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 	<pre><</pre> <0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5 <p< td=""><td><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</td><td><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</td><td> <0.5 < <0.5 < </td><td>0.5 <0.</td> 0.5 <0.</p<>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 < <0.5 < 	0.5 <0.	5 <0.5	<0.5 <0.5 < 0.5 < 0.5	<0.5 <0.5 < 0.5 < 0.5	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0 <1.0 <1.0	<5.0	0.0 <5.0	<pre></pre> <2.0<2.0<2<2<2<2<2<2.0<2.0<2.0<2.0<2.0	<pre> </pre> <pre> <pre> </pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre>	 <0.5 	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 < 0.5 < 0.5	<0.5 < 0.5 < 0.5	<0.5		<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0	<0.5 - - - - - - - - - - - - - - - - - - -	<pre><0.5 <0.5 <0.5 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<0.5	$\begin{array}{c ccccc} \sim 0.5 & < 0.5 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 1.1 \\ < 0.5 & < 0.5 \\ < 0.5 & < 0.5 \\ < 0.5 & < 0.5 \\ < 0.5 & < 0.5 \\ \end{array}$
MW1 MW1 MW1 MW1 MW2 MW2 MW2 MW2	17-Nov-20 18-May-30 18-Nov-29 19-May-02 19-Nov-26 16-Jun-23 16-Nov-16 17-Aug-03 17-Nov-20	3 <5.0	<0.5	<pre><0.5 <0.5 <2 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5	<pre></pre> <0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2<0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 - - - - - - - - - - - - - - - - - - -	<0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5	<pre></pre>	<0.5 <2 <2 <2 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <2 <2 <2 <2 <1.0 <1.0 <1.0 <1.0 <1.0	 <0.2 	<0.5 < 0.5 < 0.5	<0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	 <0.5 	<0.5	 40.5 < < 	0.5 <0.	5 <0.5	<0.5 <0.5 < 0.5 <	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0 <1.0 <1.0	<5.0	0.0 <5.0	<pre></pre> <2.0<2.0<2<2<2<2<2<2.0<2.0<2.0<2.0<2.0	<pre> </pre> <pre> <pre> </pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre>	 <0.5 	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 < 0.5 < 0.5	<0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5		<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<1.0 <1.0 <5 <5 <5 <5 <1.0 <1.0 <1.0 <1.0	<0.5 - - - - - - - - - - - - - - - - - - -	<0.5 < 0.5 < 0.5 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>c0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.5 < 0.5 < 0.5 < 0.5 < 1.0 < 1.0 < 1.0</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Data input: MW Data check: JMP

Appendix G Site Photos 2019 Annual Monitoring Report Reynold's Road WDS - A442001 Appendix E File 1039-107.00

Well ID: MW1 Nov-2019

Description: view of the culvert monitored May-2019

Well ID: MW2 Nov-2019

Description: view of the west of the porperty May-2019

Malroz Engineering Inc.

Appendix H Laboratory Certificates of Analyses

Final Report

C.O.C.: G78003

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada <u>Attention:</u> Camille Malcolm

DATE RECEIVED: 02-May-19 DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

REPORT No. B19-11836 (i)

Rev. 1

Caduceon Environmental Laboratories

285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1039

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		19-W001	19-W002		
			Sample I.D.		B19-11836-1	B19-11836-2		
			Date Collect	ed	02-May-19	02-May-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed		<u> </u>	11	
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	06-May-19/O	123	132		
pH @25°C	pH Units		SM 4500H	06-May-19/O	8.13	8.18		
Conductivity @25°C	µmho/cm	1	SM 2510B	06-May-19/O	351	362		
Chloride	mg/L	0.5	SM4110C	16-May-19/O	17.9	26.0		
Nitrite (N)	mg/L	0.05	SM4110C	16-May-19/O	< 0.05	< 0.05		
Nitrate (N)	mg/L	0.05	SM4110C	16-May-19/O	< 0.05	< 0.05		
Sulphate	mg/L	1	SM4110C	16-May-19/O	18	4		
Total Suspended Solids	mg/L	3	SM2540D	08-May-19/K	10	5		
Phosphorus-Total	mg/L	0.01	E3199A.1	14-May-19/K	0.23	0.05		
Total Kjeldahl Nitrogen	mg/L	0.1	E3199A.1	14-May-19/K	0.1	0.1		
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	07-May-19/K	0.05	0.04		
Total Dissolved Solids	mg/L	3	SM 2540D	07-May-19/O	181	186		
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	11-May-19/O	4.3	4.5		
Phenolics	mg/L	0.002	MOEE 3179	08-May-19/K	< 0.002	< 0.002		
COD	mg/L	5	SM 5220D	10-May-19/O	10	< 5		
Hardness (as CaCO3)	mg/L	1	SM 3120	08-May-19/O	143	126		
Aluminum	µg/L	10	SM 3120	08-May-19/O	30	20		
Arsenic	µg/L	0.1	EPA 200.8	07-May-19/O	1.2	0.7		
Barium	µg/L	1	SM 3120	08-May-19/O	49	51		
Boron	µg/L	5	SM 3120	08-May-19/O	49	54		
Cadmium	µg/L	0.015	EPA 200.8	07-May-19/O	0.018	< 0.015		
Calcium	µg/L	20	SM 3120	08-May-19/O	32600	27500		
Chromium	µg/L	1	EPA 200.8	07-May-19/O	1	1		
Cobalt	µg/L	0.1	EPA 200.8	07-May-19/O	< 0.1	< 0.1		
Copper	µg/L	0.1	EPA 200.8	07-May-19/O	2.5	1.4		
Iron	µg/L	5	SM 3120	08-May-19/O	< 5	< 5		
Lead	µg/L	0.02	EPA 200.8	07-May-19/O	0.24	0.13		

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

Rev. 1

REPORT No. B19-11836 (i)

C.O.C.: G78003

Malroz Engineering Inc.

308 Wellington Street, 2nd Floor

Kingston ON K7K 7A8 Canada

DATE RECEIVED: 02-May-19

DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

Attention: Camille Malcolm

Report To:

Caduceon Environmental Laboratories

285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1039

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		19-W001	19-W002	
			Sample I.D.		B19-11836-1	B19-11836-2	
			Date Collected		02-May-19	02-May-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Magnesium	μg/L	20	SM 3120	08-May-19/O	15000	13900	
Manganese	µg/L	1	SM 3120	08-May-19/O	1	2	
Mercury	µg/L	0.02	SM 3112 B	07-May-19/O	< 0.02	< 0.02	
Potassium	µg/L	100	SM 3120	08-May-19/O	1300	1400	
Silver	µg/L	0.1	EPA 200.8	07-May-19/O	< 0.1	< 0.1	
Sodium	µg/L	200	SM 3120	08-May-19/O	17300	27000	
Strontium	µg/L	1	SM 3120	08-May-19/O	831	448	
Uranium	μg/L	0.05	EPA 200.8	07-May-19/O	0.69	0.62	
Vanadium	μg/L	5	SM 3120	08-May-19/O	< 5	< 5	
Zinc	µg/L	5	SM 3120	08-May-19/O	< 5	< 5	

1 Revised to change reporting units for metals

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G78003

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada <u>Attention:</u> Camille Malcolm

DATE RECEIVED: 02-May-19 DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

REPORT No. B19-11836 (ii)

Rev. 1

Caduceon Environmental Laboratories

285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1039

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		19-W001	19-W002		
			Sample I.D.		B19-11836-1	B19-11836-2		
			Date Collect	ed	02-May-19	02-May-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed		1	1	
Acetone	µg/L	30	EPA 8260	09-May-19/R	< 30	< 30		
Benzene	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Bromodichloromethane	µg/L	2	EPA 8260	09-May-19/R	< 2	< 2		
Bromoform	µg/L	5	EPA 8260	09-May-19/R	< 5	< 5		
Bromomethane	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Carbon Tetrachloride	µg/L	0.2	EPA 8260	09-May-19/R	< 0.2	< 0.2		
Chloroform	µg/L	1	EPA 8260	09-May-19/R	< 1	< 1		
Dibromochloromethane	µg/L	2	EPA 8260	09-May-19/R	< 2	< 2		
Dibromoethane,1,2- (Ethylene Dibromide)	µg/L	0.2	EPA 8260	09-May-19/R	< 0.2	< 0.2		
Dichlorobenzene,1,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichlorobenzene,1,3-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichlorobenzene,1,4-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichlorodifluoromethane	µg/L	2	EPA 8260	09-May-19/R	< 2	< 2		
Dichloroethane,1,1-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloroethane,1,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloroethene, cis-1,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloroethene, trans-1,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloroethylene,1,1-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloromethane (Methylene Chloride)	µg/L	5	EPA 8260	09-May-19/R	< 5	< 5		
Dichloropropane,1,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloropropene 1,3- cis+trans	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloropropene, cis-1,3-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Dichloropropene, trans-1,3-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Ethylbenzene	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5		
Hexane	µg/L	5	EPA 8260	09-May-19/R	< 5	< 5		

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G78003

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada <u>Attention:</u> Camille Malcolm

DATE RECEIVED: 02-May-19 DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

REPORT No. B19-11836 (ii)

Rev. 1

Caduceon Environmental Laboratories

285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1039

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		19-W001	19-W002	
			Sample I.D.		B19-11836-1	B19-11836-2	
			Date Collecte	ed	02-May-19	02-May-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed		1	
Methyl Ethyl Ketone	µg/L	20	EPA 8260	09-May-19/R	< 20	< 20	
Methyl Isobutyl Ketone	µg/L	20	EPA 8260	09-May-19/R	< 20	< 20	
Methyl-t-butyl Ether	µg/L	2	EPA 8260	09-May-19/R	< 2	< 2	
Monochlorobenzene (Chlorobenzene)	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Styrene	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Tetrachloroethane,1,1,1,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Tetrachloroethane,1,1,2,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Tetrachloroethylene	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Toluene	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Trichloroethane,1,1,1-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Trichloroethane,1,1,2-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Trichloroethylene	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
Trichlorofluoromethane	µg/L	5	EPA 8260	09-May-19/R	< 5	< 5	
Vinyl Chloride	µg/L	0.2	EPA 8260	09-May-19/R	< 0.2	< 0.2	
Xylene, m,p-	µg/L	1.0	EPA 8260	09-May-19/R	< 1.0	< 1.0	
Xylene, m,p,o-	µg/L	1.1	EPA 8260	09-May-19/R	< 1.1	< 1.1	
Xylene, o-	µg/L	0.5	EPA 8260	09-May-19/R	< 0.5	< 0.5	
PHC F1 (C6-C10)	µg/L	50	MOE E3421	10-May-19/R	< 50	< 50	
PHC F2 (>C10-C16)	µg/L	50	MOE E3421	03-May-19/K	< 50	< 50	
PHC F3 (>C16-C34)	µg/L	400	MOE E3421	03-May-19/K	< 400	< 400	
PHC F4 (>C34-C50)	µg/L	400	MOE E3421	03-May-19/K	< 400	< 400	

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G78003

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada

Attention: Camille Malcolm DATE RECEIVED: 02-May-19 DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

REPORT No. B19-11836 (iii)

Rev. 1

Caduceon Environmental Laboratories

285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1039

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		19-W001	40.14/000	
						19-W002	
			Sample I.D.		B19-11836-1 02-May-19	B19-11836-2	
			Date Collect	Date Collected		02-May-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Acenaphthene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Acenaphthylene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Anthracene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Benzo(a)anthracene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Benzo(a)pyrene	µg/L	0.01	EPA 8270	06-May-19/K	< 0.01	< 0.01	
Benzo(b)fluoranthene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Benzo(b+k)fluoranthene	µg/L	0.1	EPA 8270	06-May-19/K	< 0.1	< 0.1	
Benzo(k)fluoranthene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Benzo(g,h,i)perylene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Biphenyl, 1, 1-	µg/L	0.2	EPA 8270	06-May-19/K	< 0.2	< 0.2	
Chrysene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Dibenzo(a,h)anthracene	µg/L	0.05	EPA 8270	21-Jan-20/K	< 0.05	< 0.05	
Fluoranthene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Fluorene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Indeno(1,2,3,-cd)pyrene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Methylnaphthalene,1-	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Methylnaphthalene,2-	µg/L	0.08	EPA 8270	06-May-19/K	< 0.08	< 0.08	
Methylnaphthalene 2-(1-)	µg/L	1	EPA 8270	06-May-19/K	< 1	< 1	
Naphthalene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Phenanthrene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	
Pyrene	µg/L	0.05	EPA 8270	06-May-19/K	< 0.05	< 0.05	

1 Low phenol surrogate recovery due to sample matrix interferences

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G91326

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada <u>Attention:</u> Mallory Wright

DATE RECEIVED: 26-Nov-19 DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

REPORT No. B19-38407 (i)

Rev. 1

Caduceon Environmental Laboratories285 Dalton AveKingston Ontario K7K 6Z1Tel: 613-544-2001Fax: 613-544-2770JOB/PROJECT NO.:Reynolds RoadP.O. NUMBER:1039WATERWORKS NO.

			Client I.D.		19-W003	19-W004	
			Sample I.D.		B19-38407-1	B19-38407-2	
			Date Collecte	ed	26-Nov-19	26-Nov-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	28-Nov-19/O	126	125	
pH @25°C	pH Units		SM 4500H	28-Nov-19/O	8.05	8.04	
Conductivity @25°C	µmho/cm	1	SM 2510B	28-Nov-19/O	340	348	
Chloride	mg/L	0.5	SM4110C	12-Dec-19/O	31.3	22.1	
Nitrite (N)	mg/L	0.05	SM4110C	12-Dec-19/O	< 0.05	< 0.05	
Nitrate (N)	mg/L	0.05	SM4110C	12-Dec-19/O	0.12	0.11	
Sulphate	mg/L	1	SM4110C	12-Dec-19/O	2	20	
Total Suspended Solids	mg/L	3	SM2540D	27-Nov-19/K	5	15	
Phosphorus-Total	mg/L	0.01	E3199A.1	29-Nov-19/K	0.05	0.10	
Total Kjeldahl Nitrogen	mg/L	0.1	E3199A.1	29-Nov-19/K	0.2	0.1	
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	28-Nov-19/K	0.05	0.04	
Total Dissolved Solids	mg/L	3	SM 2540D	29-Nov-19/O	175	179	
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	09-Dec-19/O	2.3	1.8	
Phenolics	mg/L	0.001	MOEE 3179	29-Nov-19/K	< 0.001	0.004	
COD	mg/L	5	SM 5220D	29-Nov-19/O	< 5	< 5	
Hardness (as CaCO3)	mg/L	1	SM 3120	28-Nov-19/O	119	145	
Aluminum	µg/L	10	SM 3120	28-Nov-19/O	20	20	
Arsenic	µg/L	0.1	EPA 200.8	29-Nov-19/O	0.9	1.2	
Barium	µg/L	1	SM 3120	28-Nov-19/O	56	56	
Boron	µg/L	5	SM 3120	28-Nov-19/O	58	52	
Cadmium	µg/L	0.015	EPA 200.8	29-Nov-19/O	< 0.015	< 0.015	
Calcium	µg/L	20	SM 3120	28-Nov-19/O	25600	33400	
Chromium	µg/L	1	EPA 200.8	29-Nov-19/O	< 1	< 1	
Cobalt	µg/L	0.1	EPA 200.8	29-Nov-19/O	< 0.1	< 0.1	
Copper	µg/L	0.1	EPA 200.8	29-Nov-19/O	2.0	3.6	
Iron	µg/L	5	SM 3120	28-Nov-19/O	36	< 5	
Lead	µg/L	0.02	EPA 200.8	29-Nov-19/O	0.07	0.08	

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

1039

Final Report

C.O.C.: G91326

Malroz Engineering Inc.

308 Wellington Street, 2nd Floor

Kingston ON K7K 7A8 Canada

DATE RECEIVED: 26-Nov-19

DATE REPORTED: 21-Jan-20

Attention: Mallory Wright

Report To:

REPORT No. B19-38407 (i) Rev. 1

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO .: Reynolds Road P.O. NUMBER: SAMPLE MATRIX: Groundwater WATERWORKS NO.

Client I.D. 19-W003 19-W004 Sample I.D. B19-38407-1 B19-38407-2 **Date Collected** 26-Nov-19 26-Nov-19 Reference Date/Site Parameter Units R.L. Method Analyzed 20 SM 3120 28-Nov-19/O 13500 15000 Magnesium µg/L Manganese SM 3120 28-Nov-19/O 11 µg/L 1 1 03-Dec-19/O 0.02 SM 3112 B < 0.02 < 0.02 Mercury µg/L Potassium 100 SM 3120 28-Nov-19/O 1500 1400 µg/L Silver 0.1 EPA 200.8 29-Nov-19/O < 0.1 < 0.1 µg/L Sodium 200 SM 3120 28-Nov-19/O 27400 16700 µg/L Strontium 28-Nov-19/O 431 830 1 SM 3120 µg/L 0.05 Uranium µg/L EPA 200.8 29-Nov-19/O 0.35 0.55 Vanadium µg/L 5 SM 3120 28-Nov-19/O < 5 < 5 Zinc 5 SM 3120 28-Nov-19/O 5 < 5 µg/L

1 Revised to change reporting units for metals to ug/L

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G91326

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada <u>Attention:</u> Mallory Wright

DATE RECEIVED: 26-Nov-19 DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

REPORT No. B19-38407 (ii)

Rev. 1

Caduceon Environmental Laboratories285 Dalton AveKingston Ontario K7K 6Z1Tel: 613-544-2001Fax: 613-544-2770JOB/PROJECT NO.:Reynolds RoadP.O. NUMBER:1039WATERWORKS NO.

			Client I.D.		19-W003	19-W004	
			Sample I.D.		B19-38407-1	B19-38407-2	
			Date Collect	ed	26-Nov-19	26-Nov-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Acetone	µg/L	30	EPA 8260	04-Dec-19/R	< 30	< 30	
Benzene	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Bromodichloromethane	µg/L	2	EPA 8260	04-Dec-19/R	< 2	< 2	
Bromoform	µg/L	5	EPA 8260	04-Dec-19/R	< 5	< 5	
Bromomethane	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Carbon Tetrachloride	µg/L	0.2	EPA 8260	04-Dec-19/R	< 0.2	< 0.2	
Chloroform	µg/L	1	EPA 8260	04-Dec-19/R	< 1	< 1	
Dibromochloromethane	µg/L	2	EPA 8260	04-Dec-19/R	< 2	< 2	
Dibromoethane,1,2- (Ethylene Dibromide)	µg/L	0.2	EPA 8260	04-Dec-19/R	< 0.2	< 0.2	
Dichlorobenzene,1,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichlorobenzene,1,3-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichlorobenzene,1,4-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichlorodifluoromethane	µg/L	2	EPA 8260	04-Dec-19/R	< 2	< 2	
Dichloroethane,1,1-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloroethane,1,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloroethene, cis-1,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloroethene, trans-1,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloroethylene,1,1-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloromethane (Methylene Chloride)	µg/L	5	EPA 8260	04-Dec-19/R	< 5	< 5	
Dichloropropane,1,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloropropene 1,3- cis+trans	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloropropene, cis-1,3-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Dichloropropene, trans-1,3-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Ethylbenzene	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Hexane	µg/L	5	EPA 8260	04-Dec-19/R	< 5	< 5	

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G91326

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada <u>Attention:</u> Mallory Wright

DATE RECEIVED: 26-Nov-19 DATE REPORTED: 21-Jan-20 SAMPLE MATRIX: Groundwater

REPORT No. B19-38407 (ii)

Rev. 1

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001

Fax: 613-544-2770 JOB/PROJECT NO.: Reynolds Road

P.O. NUMBER: 1039

WATERWORKS NO.

			Client I.D.		19-W003	19-W004	
			Sample I.D.		B19-38407-1	B19-38407-2	
			Date Collect	ed	26-Nov-19	26-Nov-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Methyl Ethyl Ketone	µg/L	20	EPA 8260	04-Dec-19/R	< 20	< 20	
Methyl Isobutyl Ketone	µg/L	20	EPA 8260	04-Dec-19/R	< 20	< 20	
Methyl-t-butyl Ether	µg/L	2	EPA 8260	04-Dec-19/R	< 2	< 2	
Monochlorobenzene (Chlorobenzene)	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Styrene	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Tetrachloroethane,1,1,1,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Tetrachloroethane,1,1,2,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Tetrachloroethylene	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Toluene	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Trichloroethane,1,1,1-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Trichloroethane,1,1,2-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Trichloroethylene	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
Trichlorofluoromethane	µg/L	5	EPA 8260	04-Dec-19/R	< 5	< 5	
Vinyl Chloride	µg/L	0.2	EPA 8260	04-Dec-19/R	< 0.2	< 0.2	
Xylene, m,p-	µg/L	1.0	EPA 8260	04-Dec-19/R	< 1.0	< 1.0	
Xylene, m,p,o-	µg/L	1.1	EPA 8260	04-Dec-19/R	< 1.1	< 1.1	
Xylene, o-	µg/L	0.5	EPA 8260	04-Dec-19/R	< 0.5	< 0.5	
PHC F1 (C6-C10)	µg/L	50	MOE E3421	05-Dec-19/R	< 50	< 50	
PHC F2 (>C10-C16)	µg/L	50	MOE E3421	02-Dec-19/K	< 50	< 50	
PHC F3 (>C16-C34)	µg/L	400	MOE E3421	02-Dec-19/K	< 400	< 400	
PHC F4 (>C34-C50)	µg/L	400	MOE E3421	02-Dec-19/K	< 400	< 400	

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G91326

Report To:

Malroz Engineering Inc. 308 Wellington Street, 2nd Floor Kingston ON K7K 7A8 Canada <u>Attention:</u> Mallory Wright

DATE RECEIVED: 26-Nov-19 DATE REPORTED: 21-Jan-20

SAMPLE MATRIX: Groundwater

REPORT No. B19-38407 (iii)

Rev. 1

Caduceon Environmental Laboratories285 Dalton AveKingston Ontario K7K 6Z1Tel: 613-544-2001Fax: 613-544-2770JOB/PROJECT NO.:Reynolds RoadP.O. NUMBER:1039WATERWORKS NO.

					10 11/000			
			Client I.D.		19-W003	19-W004		
			Sample I.D.		B19-38407-1	B19-38407-2		
			Date Collect	ed	26-Nov-19	26-Nov-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Acenaphthene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Acenaphthylene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Anthracene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Benzo(a)anthracene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Benzo(a)pyrene	µg/L	0.01	EPA 8270	29-Nov-19/K	< 0.01	< 0.01		
Benzo(b)fluoranthene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Benzo(b+k)fluoranthene	µg/L	0.1	EPA 8270	29-Nov-19/K	< 0.1	< 0.1		
Benzo(g,h,i)perylene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Benzo(k)fluoranthene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Biphenyl, 1, 1-	µg/L	0.2	EPA 8270	29-Nov-19/K	< 0.2	< 0.2		
Chrysene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Dibenzo(a,h)anthracene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Fluoranthene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Fluorene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Indeno(1,2,3,-cd)pyrene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Methylnaphthalene 2-(1-)	µg/L	1	EPA 8270	29-Nov-19/K	< 1	< 1		
Methylnaphthalene,1-	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Methylnaphthalene,2-	µg/L	0.08	EPA 8270	29-Nov-19/K	< 0.08	< 0.08		
Naphthalene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Phenanthrene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		
Pyrene	µg/L	0.05	EPA 8270	29-Nov-19/K	< 0.05	< 0.05		

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager